
Programming in R Lists and maps Timestamps More on ggplot

Unit 02:
Hermione Granger and the billboard dataset

Applied AI with R

Ferdinand Ferber and Wolfgang Trutschnig

Paris Lodron Universität Salzburg

3/4/24

Programming in R Lists and maps Timestamps More on ggplot

Table of contents I

1 Programming in R

2 Lists and maps

3 Timestamps

4 More on ggplot

Programming in R Lists and maps Timestamps More on ggplot

Hermione Granger and the billboards dataset

AI generated image for the prompt “Hermione Granger listening to
music with a computer in the background at Hogwards.”

Programming in R Lists and maps Timestamps More on ggplot

Hermione Granger and the billboards dataset

Using her analytical prowess, Hermione discovers that
Voldemort’s weakness lies not only in his Horcruxes, but also
in his taste for music.

She learns that the Dark Lord secretly loves Muggle music,
particularly cheesy 2000s pop hits.

Armed with this knowledge and access to the billboard
dataset1, Hermione comes up with the plan to study the
rankings to find the perfect tune to infiltrate Voldemort’s
mind and distract him by some irresistable beats.

1The Billboard Hot 100 is the music industry standard record chart in the
US for songs, based on sales, streaming and radio airplay.

Programming in R Lists and maps Timestamps More on ggplot

Section 1

Programming in R

Programming in R Lists and maps Timestamps More on ggplot

What is R and where does it came from

In the mid-1970s: Statistics was done using specialized
FORTRAN libraries

This is cumbersome for repetitive tasks

And makes exploratory data analysis hard

To combat this: The S language was designed at Bell
Laboratories around 1975

Programming in R Lists and maps Timestamps More on ggplot

What is R and where does it came from

First version: Just a bunch of macros to transform S
statements to FORTRAN subroutine calls.

Operated in a read-eval-print-loop (REPL), i.e. interactively.

Unique selling point (USP): A device-independent graphics
system (for various printers, plotters, microfilm recorders and
text terminals).

Over the time, S grew into a proper, standalone programming
language, specializing in statistical computing.

The R programming language is an open source
implementation of S.

Programming in R Lists and maps Timestamps More on ggplot

Naming

Naming of the S language/system: A pun on the C
programming languge (also from Bell Labs).

The R language refers to the S language in the same manner

Programming in R Lists and maps Timestamps More on ggplot

Language design principles

…imperative (you tell the CPU what to do).

…interpreted (machine code is generated on the fly by the
runtime, no compilation).

…dynamically typed (type errors will be caught at runtime).

…lexically scoped2 (identifier resolution refers to regions of the
source code).

…garbage collected (you don’t need to allocate/free memory
yourself).

…lazy (values are only computed when actually needed).

2With the exception of non-standard evaluation

Programming in R Lists and maps Timestamps More on ggplot

R as a functional language

Functions are first-class citicens, they can be stored in
variables and passed around.

Most R functions treat data as immutable. Function
arguments are not passed by reference, but passed by value
(as a deep copy).

R supports anonymous functions (lambdas).

But: No algebraic data types, no optimization for recursion,
no sophisticated pattern matching, all variables are mutable.

Programming in R Lists and maps Timestamps More on ggplot

R as an object-oriented language

The R language has not one, but three major classes: S3, R6
and S4.

The language is dynamic enough to allow you writing your
own, if you like.

Normal R users rarely interact with the object systems directly.
It usually stays in the background and does its magic there.

Programming in R Lists and maps Timestamps More on ggplot

If..then..else

In R the if..then..else syntax is an expression that returns
a value.

The else part can be omitted (R will silently return a NULL
value for that missing branch). Of course, it is also not
neccessary to bind the value of the if-expression to a name.

x <- 5
res <- if (x < 10) {

2 * x
} else {

1 + x
}

res

[1] 10

Programming in R Lists and maps Timestamps More on ggplot

For loops

for loops are used to iterate over items in a vector or list and
perform an action (i.e. side effect).

The next statement skips the rest of the current iteration and
the break statement exits the entire loop.

for (i in 1:10) {
if (i < 3)
next

print(i)
if (i >= 5)
break

}

[1] 3
[1] 4
[1] 5

Programming in R Lists and maps Timestamps More on ggplot

Remarks on control flow and imperative programming

For most data analysis tasks, imperative programming
(looping over a set of indices and fiddling around with arrays)
is not the most elegant way.

Instead, functional programming (i.e. filtering and mapping
over lists) is advised.

So this was the last time you see a for loop in this lecture
and we will now dive into functional programming.

Programming in R Lists and maps Timestamps More on ggplot

Defining functions

Functions consist of three parts:
A list of formal arguments, a function body, an environment.
The environment will be created implicitly (and R is the only
programming language that allows to manipulate it3).

Define a function that adds two inputs and
assign it to the name `myfun`
myfun <- function(x, y) {

x + y
}

Call the function
myfun(10, 20)

[1] 30
3See the lecture Tom Riddle and the Dark Arts of R

Programming in R Lists and maps Timestamps More on ggplot

The return statement
Usually, the last expression of a function will determine the
return value of that function.
But we can control this behaviour with the return()
keyword:

myfun <- function(x, y) {
if(x) {

return(y) # Early return
}
This is the last expression and will
otherwise be returned
y + 1

}
Call the function
myfun(TRUE, 20)

[1] 20

Programming in R Lists and maps Timestamps More on ggplot

do.call

If the arguments of a function are already in a data structure,
you can use do.call() to call the function:

myfun <- function(x, y) {
x + y

}

args <- list(x = 10, y = 20)
do.call(myfun, args)

[1] 30

do.call() is particularly useful, e.g., for binding dataframes
of a list in a joint dataframe.

Programming in R Lists and maps Timestamps More on ggplot

Pipe
You already know the pipe. You can override
first-argument-injection by using the pipe placeholder _ for it.
It only works for named arguments:

myfun <- function(x, y) paste(x, y)

First-argument-injection
"hello" |> myfun("world")
#> [1] "hello world"

Explicit argument injection
"world" |> myfun("hello", y = _)
[1] "hello world"

Illegal:
"world" |> myfun("hello", _)

Programming in R Lists and maps Timestamps More on ggplot

Lexical scoping

We can use the assignment operator (e.g. x <- 10) to assign
a name to a value. The reverse, finding the value to a given
name, is called identifier resolution.
One key concept is scoping: Every identifier is only valid in its
scope. In lexical scoping the scope depends on the region of
the source code.

x <- 10
myfun <- function() {

y <- 20
y

}

myfun() # `myfun()` will set `y`
y # But, we can't access `y` here!

Programming in R Lists and maps Timestamps More on ggplot

Shadowing
Shadowing allows you to re-use a variable name. Identifier
resolution always starts in the current scope. If a value is
found, it will be used. Otherwise, the search will continue in
the outer scope. This process continues until the global scope
is reached. An error is thrown if the value can’t be found
there.

x <- 1 ; y <- 2
myfun <- function() {

`x` shadows the other `x` in the outer scope
x <- 10

`y` is not found in this scope,
proceed in the outer scope.
c(x, y)

}
myfun() #> [1] 10 2

[1] 10 2

Programming in R Lists and maps Timestamps More on ggplot

Exercise

After being correct so many times, Prof. Snape is furious
about Hermione.

He wants to challenge her and asks these questions. Help her
answering them correctly:

What does the following code return? Describe how each of
the three c’s is interpreted:
c <- 10
c(c = c)

Programming in R Lists and maps Timestamps More on ggplot

Exercise

What does the following function return?
f <- function(x) {
f <- function(x) {
f <- function() {

x^2
}
f() + 1

}
f(x) * 2

}
f(10)

Programming in R Lists and maps Timestamps More on ggplot

Section 2

Lists and maps

Programming in R Lists and maps Timestamps More on ggplot

Lists and maps

Lists are like atomic vectors, but with three differences:

They can contain heterogenic data (a number, a string, a
dataframe).

They can be nested.

They can be named.4

4Atomic vectors could also be named, but this is very uncommon. Lists,
however, are most of the time named.

Programming in R Lists and maps Timestamps More on ggplot

Creating lists

You can create lists using the list() function:
list(name = "Rubeus Hagrid", birthyear = 1928)

$name
[1] "Rubeus Hagrid"

$birthyear
[1] 1928

Programming in R Lists and maps Timestamps More on ggplot

Accessing lists

Two ways for accessing list elements:
x <- list(name = "Rubeus Hagrid", birthyear = 1928)
x$name

[1] "Rubeus Hagrid"

and
x[["birthyear"]]

[1] 1928

Note the analogy to accessing columns in dataframes.

Programming in R Lists and maps Timestamps More on ggplot

Sublists

It’s possible to select a sublist via single brackets:
x["name"]

$name
[1] "Rubeus Hagrid"

Programming in R Lists and maps Timestamps More on ggplot

Mapping over lists

In data analysis, we often want to apply the same
transformation to all elements of a list.

We could use a for loop, but map is more elegant. The
syntax \(x) expr(x) defines an anonymous function.

library(tidyverse)
mylist <- list(c(1,2,3), c(9,8,7))
mylist |> map_int(\(lst) sum(lst))

[1] 6 24

There are different variants for maps: The map() version
takes a list and returns a list.
The variants map_int(), map_dbl(), map_char(),
map_lgl() take lists and return integer vectors, float vectors,
character vectors or boolean vectors resp.

Programming in R Lists and maps Timestamps More on ggplot

imap

Often it is necessary to iterate over the elements and their
indices/names at the same time. The imap() function does
this:

unnamed_list <- list("some argument", "another point")
imap(unnamed_list, \(elem, idx) paste0(idx, ") ", elem))

[[1]]
[1] "1) some argument"

[[2]]
[1] "2) another point"

Programming in R Lists and maps Timestamps More on ggplot

imap

This also works for named lists:
named_list <- list(first = "some argument",

second = "another point")
imap(named_list, \(elem, name) paste0(name, ": ", elem))

$first
[1] "first: some argument"

$second
[1] "second: another point"

Programming in R Lists and maps Timestamps More on ggplot

map_if

It is always possible to use if...else in the function that
gets mapped over a container. But for simple cases there is a
special case map_if(cond, fn):

x <- list(c(1, 2, 3), c("a", "b", "c"))

Apply the function `as.character` only for elements
satisfying the condition `is.numeric`
x |> map_if(is.numeric, as.character)

[[1]]
[1] "1" "2" "3"

[[2]]
[1] "a" "b" "c"

Programming in R Lists and maps Timestamps More on ggplot

Filter
We can use a filter to keep (or discard) all elements of a
container that satisfy a given predicate. keep(lst, pred)
keeps all elements of lst that satisfy pred. discard(lst,
pred) discards them.

rep(10, times = 10) |>
map(\(to) sample(1:to, size = 5)) |>
keep(\(x) mean(x) > 6)

[[1]]
[1] 8 9 6 2 10

[[2]]
[1] 4 5 7 9 6

[[3]]
[1] 7 9 1 10 6

Programming in R Lists and maps Timestamps More on ggplot

Filter

Instead of testing elements for filtering, we can also test the
whole list:

is_even <- function(x) x %% 2 == 0

3:10 |> every(is_even)
#> [1] FALSE

3:10 |> some(is_even)
#> [1] TRUE

3:10 |> none(is_even)
#> [1] FALSE

Programming in R Lists and maps Timestamps More on ggplot

Pluck

The base-R indexing operator doesn’t work naturally in pipes.
Therefore the {purrr} package provides the pluck()
function, that also supports indexing into deeply nested
structures:

obj <- list(
list("a", list(1, foo = "bar")),
list("b", list(2, foo = "baz"))

)
pluck(obj, 1, 2, "foo") # same as obj[[1]][[2]][["foo"]]

[1] "bar"
pluck(obj, 10)

NULL

Programming in R Lists and maps Timestamps More on ggplot

Pluck and map

All map functions take also pluck-locations instead of a
function.

obj <- list(
list("a", list(1, foo = "bar")),
list("b", list(2, foo = "baz"))

)

obj |> map_chr(1)

[1] "a" "b"

Programming in R Lists and maps Timestamps More on ggplot

Exercise

Download the billboard.json file (see 02_Hermione.R)

Install the jsonlite package

Use jsonlite::fromJSON("billboard.json",
simplifyDataFrame = F) to parse the JSON as a list.

Hermione wants to know which songs performed
extraordinarily well:

Get all Muggle songs that got a rank 1-30 in just the first
week.
What is the highest week one ranking ever achieved?
Which Muggle track stayed in the charts for the longest time?

Programming in R Lists and maps Timestamps More on ggplot

Section 3

Timestamps

Programming in R Lists and maps Timestamps More on ggplot

Handling timestamps

Time is sometimes complicated due to the following obstacles:

UTC has leap seconds at irregular intervals.

Calendars have leap years.

Time zones.

Daylight saving time.

Programming in R Lists and maps Timestamps More on ggplot

Unix time

To store UTC timestamps, one usually saves them as the
number of SI-seconds (i.e., non-leap seconds) since the UNIX
epoch, 1970-01-01 00:00:00 UTC+0.

In R, the datatype holding UTC timestamps is called POSIXct
and saves this number as a double.

It is important to note that R will print POSIXct timestamps
as a string using the local timezone, e.g. "2024-02-15
15:24:23 CET".

Hence, the same timestamp can show up different on other
people’s computers (if their timezone is not the same).

Programming in R Lists and maps Timestamps More on ggplot

The lubridate package

The {lubridate} package is part of the tidyverse and
provides a number of verbs to work with timestamps.

It proves useful in many situations and simplifies many tasks
when working with timestamps or dates.

Programming in R Lists and maps Timestamps More on ggplot

Parsing timestamps

Timestamps are often stored as a string that needs to be
parsed.
{lubridate} provides a family of helpers to parse various
kinds of strings.

ymd_hms("2017-11-28T14:03:00Z")
ymd_hms("2017-11-28T14:03:00.683+0230")
mdy_h("11/28/2017 2pm", tz = "US/Pacific")
dmy_hm("28.11.2017 14:03", tz = "Europe/Vienna")
mdy("November 28th, 2017")

If no timezone is supplied, the local timezone is assumed.
Seconds can be fractional.

Programming in R Lists and maps Timestamps More on ggplot

Timestamp components

Once you have a timestamp in numeric format, you can
decompose it into its components (not a complete list):

ts <- ymd_hms("2017-11-28T14:03:00.683+0230")

year(ts) #> [1] 2017
day(ts) #> [1] 28
wday(ts) #> [1] 3
hour(ts) #> [1] 11
tz(ts) #> [1] UTC

Notice that you get the time in UTC. Weekdays start from
Sunday.

Programming in R Lists and maps Timestamps More on ggplot

Periods5

In {lubridate} a period
tracks changes in clock time,
ignoring leap seconds/years.

5Image taken from the lubridate cheat sheet, Posit Software, PBC

Programming in R Lists and maps Timestamps More on ggplot

Periods

ts <- ymd_hms("2017-11-28T14:03:00.683+0230")

ts + years(1) #> [1] "2018-11-28 11:33:00 UTC"
ts + months(2) #> [1] "2018-01-28 11:33:00 UTC"
ts + weeks(3) #> [1] "2017-12-19 11:33:00 UTC"
ts + seconds(4) #> [1] "2017-11-28 11:33:04 UTC"

years(1) + months(2) + weeks(3) + seconds(4)
#> [1] "1y 2m 21d 0H 0M 4S"

Programming in R Lists and maps Timestamps More on ggplot

Periods

This ususally works well… until it doesn’t. Using periods, one
can create nonexisting timestamps.
The + operator returns NA in this case.
The %m+% operator rolls imaginary dates back to the last day
of the previous month.

ts <- ymd("2024-01-31")
ts + months(1)

[1] NA
ts %m+% months(1)

[1] "2024-02-29"

Programming in R Lists and maps Timestamps More on ggplot

Durations6

In {lubridate} a duration
tracks physical time,
including leap seconds/years.
All functions to create
durations can be prepended
with an d to create a
duration instead. Durations
are always in terms of
SI-seconds.

6Image taken from the lubridate cheat sheet, Posit Software, PBC

Programming in R Lists and maps Timestamps More on ggplot

Intervals

You can construct intervals by given two timestamps as the
borders and test if a third timestamp is inside the interval.

from <- ymd("2017-01-01")
to <- ymd("2017-01-31")
ts <- ymd("2017-01-15")

ts %within% interval(from, to)

[1] TRUE

Programming in R Lists and maps Timestamps More on ggplot

Exercise

Download the billboard.csv file (see 02_Hermione.R) and
parse it into a dataframe.

The date.entered column is stored as a string. Parse the
string into a timestamp.

The week is relative to the date.entered. Use the
{lubridate} verbs to calculate the actual date.

Programming in R Lists and maps Timestamps More on ggplot

Section 4

More on ggplot

Programming in R Lists and maps Timestamps More on ggplot

More on ggplot

In the last unit we already got an introduction to {ggplot2}.

We will extend our knowlegde a bit and learn about how to
add multiple layers to a ggplot, how to add titles and label
and how to handle factorial variables.

Programming in R Lists and maps Timestamps More on ggplot

Multiple layers

Consider the following dataset
df <- billboard |>

mutate(first_letter = str_sub(artist, 1, 1)) |>
select(artist, track, first_letter, wk1)

df |> slice_sample(n = 5)

artist track first_letter wk1
Houston, Whitney My Love Is Your Love H 81
Offspring, The Original Prankster O 74
Lonestar What About Now L 78
Lonestar Amazed L 81
Jay-Z I Just Wanna Love U … J 58

Programming in R Lists and maps Timestamps More on ggplot

Multiple layers
We might wonder if artists starting with early letters perform
on average better than artists with late letters in the alphabet.
Let’s draw a boxplot:

df |> ggplot(aes(x = first_letter, y = wk1)) +
geom_boxplot()

25

50

75

100

2 3 5 9 A B C D E F G H I J K L m M N O P Q R S T U V W Y Z
first_letter

w
k1

Programming in R Lists and maps Timestamps More on ggplot

Multiple layers

Let’s add another layer showing the actual points:
df |> ggplot(aes(x = first_letter, y = wk1)) +
geom_boxplot() +
geom_point(colour = "#555555")

25

50

75

100

2 3 5 9 A B C D E F G H I J K L m M N O P Q R S T U V W Y Z
first_letter

w
k1

Programming in R Lists and maps Timestamps More on ggplot

Titles and labels

Let’s modify the code a little bit. Notice that {ggplot}
magically determined the axis labels.

billboard |> ggplot(aes(x = str_sub(artist,1,1), y = wk1)) +
geom_boxplot()

25

50

75

100

2 3 5 9 A B C D E F G H I J K L m M N O P Q R S T U V W Y Z
str_sub(artist, 1, 1)

w
k1

Programming in R Lists and maps Timestamps More on ggplot

Titles and labels

We might want to change that (and add a title).
billboard |> ggplot(aes(x = str_sub(artist,1,1), y = wk1)) +
geom_boxplot() +
labs(x = "First letter of the artist name",

y = "Placement in week 1",
title = "Does the artist name influence rankings?")

25

50

75

100

2 3 5 9 A B C D E F G H I J K L m M N O P Q R S T U V W Y Z
First letter of the artist name

P
la

ce
m

en
t i

n
w

ee
k

1

Does the artist name influence rankings?

Programming in R Lists and maps Timestamps More on ggplot

Forcats

Consider the following dataframe (intentionally more
complicated than necessary7, but we want to make a point
later on):

months <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec")

df <- billboard |>
mutate(enter_month = month(date.entered)) |>
rowwise() |>
mutate(enter_month = months[[enter_month]]) |>
mutate(enter_month = as.factor(enter_month)) |>
select(artist, track, enter_month, wk1)

7We could use month(date.entered, label=T) instead

Programming in R Lists and maps Timestamps More on ggplot

Forcats

Let’s prpduce a boxplot again to see if we can spot a pattern
between the month of the release and the distribution of ranks in
the first week:
df |> ggplot(aes(x = enter_month, y = wk1)) +
geom_boxplot()

25

50

75

100

Feb Sep Apr Oct Aug Jul Jan Mar Nov May Dec Jun
enter_month

w
k1

…the factors are sorted by their first occurence in the dataset.

Programming in R Lists and maps Timestamps More on ggplot

Forcats
Luckily, the {forcats} package (included in the tidyverse)
comes to a rescue.

df |>
mutate(enter_month = fct_relevel(enter_month, months)) |>
ggplot(aes(x = enter_month, y = wk1)) +
geom_boxplot()

25

50

75

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
enter_month

w
k1

Programming in R Lists and maps Timestamps More on ggplot

Forcats

Or we simply reorder a factor based on another variable in the
dataset:

df |>
ggplot(aes(x = fct_reorder(enter_month, wk1), y = wk1)) +
geom_boxplot()

25

50

75

100

Oct Aug Jan Jun Nov Feb Apr Jul Mar Sep May Dec
fct_reorder(enter_month, wk1)

w
k1

Programming in R Lists and maps Timestamps More on ggplot

Exercise

Use the billboard.csv file and parse it into a dataframe.

Come up with a way to randomly sample 10 tracks.

Produce a nice plot to show how the rankings changed over
time. Include axis labels and a title.

Hint: You may work with geom_line() and geom_point().

	Programming in R
	Lists and maps
	Timestamps
	More on ggplot

