
More on programming More on lists More on ggplot More on tidymodels

Unit 03:
Remus Luping and the msleep dataset

Applied AI with R

Ferdinand Ferber and Wolfgang Trutschnig

Paris Lodron Universität Salzburg

3/4/24

More on programming More on lists More on ggplot More on tidymodels

Table of contents I

1 More on programming

2 More on lists

3 More on ggplot

4 More on tidymodels

More on programming More on lists More on ggplot More on tidymodels

Remus Lupin and the msleep dataset

AI generated image for the prompt “Remus Lupin sleeping in front
of a computer in his office at Hogwards with a full moon shining

through the window.”

More on programming More on lists More on ggplot More on tidymodels

Remus Lupin and the msleep dataset

Remus Lupin messed up his sleep-cycle after the birth of his
son. As half-werewolf, half-human, how much sleep does he
need every night in order to stay functional?

To answer this question, Lupin analyses the msleep dataset,
containing information like average sleep time, REM sleep
time, brain weight, etc. for a wide range of animals.

Will it help him hitting the right balance between his beauty
sleep and the fight against the Dark Lord?

More on programming More on lists More on ggplot More on tidymodels

Section 1

More on programming

More on programming More on lists More on ggplot More on tidymodels

Default arguments

We can specify default arguments to a function. The caller
can overwrite those arguments.

myfun <- function(x, y = 1) {

c(x, y)
}

myfun(3)

[1] 3 1
myfun(4, 5)

[1] 4 5

More on programming More on lists More on ggplot More on tidymodels

Dot-dot-dot

Special syntax ... (pronounced dot-dot-dot) to capture any
number of additional arguments and to redirect them.

myfun <- function(type, vec, ...) {
if (type == "mean") {

mean(vec, ...)
} else {

sum(vec, ...)
}

}
myfun("mean", c(1, 2, 3, NA), na.rm = T)

[1] 2
myfun("sum", c(1, 2, 3, NA))

[1] NA

More on programming More on lists More on ggplot More on tidymodels

Dot-dot-dot

One can also use list(...) to capture the additional arguments
as a named list.
myfun <- function(type, ...) {

vec <- list(...) |> as.numeric()
if (type == "mean") {

mean(vec)
} else {

sum(vec)
}

}
myfun("mean", 1, 2, 3)

[1] 2

More on programming More on lists More on ggplot More on tidymodels

Closures

Closures are one of the most important concepts in functional
programming: a function returns another function that has
free variables (variables not defined locally).

plus <- function(a) {
inner_fun <- function(b) {

a + b # inner_fun closes over `a`
}
return(inner_fun)

}

plus_two <- plus(2)
plus_three <- plus(3)
c(plus_two(10), plus_three(20))

[1] 12 23

More on programming More on lists More on ggplot More on tidymodels

Exercise

Create a function pick() that takes as an argument an index
i and returns a function that maps a vector x to x[[i]].

So
msleep |> map(pick(5))

should be equivalent to
msleep |> map(function(x) x[[5]])

More on programming More on lists More on ggplot More on tidymodels

Section 2

More on lists

More on programming More on lists More on ggplot More on tidymodels

map21

The map2 verb traverses two lists
at the same time, applying a
function for every pair of
elements.

1Image taken from the purrr cheat sheet, Posit Software, PBC

More on programming More on lists More on ggplot More on tidymodels

map2

Sometimes we want to traverse two lists at the same time and
apply functions to both of them (classical do.call(fun,lst)
only works for one function).

This is what map2(lst1, lst2, fun) allows us to do:
by_cyl <- mtcars |> split(mtcars$cyl)
mods <- by_cyl |> map(\(df) lm(mpg ~ wt, data = df))
Pred <- map2(mods, by_cyl, predict)

The chunks above first splits the data by cyl, fits a linear
model to each group, and then applies the model to the data.

More on programming More on lists More on ggplot More on tidymodels

map2

Here’s a (more or less) base R version doing the same.

Easier to understand but more tedious to code:
by_cyl <- mtcars |> split(mtcars$cyl)
models <- vector("list",length=length(by_cyl))
predictions <- models

for(i in 1:length(by_cyl)){
models[[i]] <- lm(mpg ~ wt, data = by_cyl[[i]])

}
for(i in 1:length(by_cyl)){

predictions[[i]] <- predict(models[[i]],
newdata = by_cyl[[i]])

}

More on programming More on lists More on ggplot More on tidymodels

map2

A second example illustrating map2(lst1, lst2, fun)
myargs <- list(c(1,2,3), c(9,8,7))
myops <- list("sum", "mean")

myargs |>
map(\(vec) as.list(vec)) |>
map2_int(myops, \(arg, op) do.call(op, arg))

[1] 6 9

More on programming More on lists More on ggplot More on tidymodels

map_if2

The map_if verb applies a
transformation only to
elements that satisfy a given
predicate. All other
elements remain untouched.

2Image taken from the purrr cheat sheet, Posit Software, PBC

More on programming More on lists More on ggplot More on tidymodels

map_if

It is always possible to use
if...else in the function that
gets mapped over a container. But
for simple cases there is a special
case map_if(cond, fn).
For all elements not satisfying the
condition, the identity
transformation is applied instead.

Apply the function `as.factor`
only for elements satisfying
the condition `is.character`
msleep |> map_if(is.character,

as.factor) |>
map_chr(class)

Class
name factor
genus factor
vore factor
order factor
conservation factor
sleep_total numeric
sleep_rem numeric
sleep_cycle numeric
awake numeric
brainwt numeric
bodywt numeric

More on programming More on lists More on ggplot More on tidymodels

map_at

The function map_at(cond, fn)
is similar, but tests on the
indices/names and not on the
elements.

msleep |>
map_at(\(col) col |>

startsWith("sleep"),
as.integer) |>

map_chr(class)

Class
name character
genus character
vore character
order character
conservation character
sleep_total integer
sleep_rem integer
sleep_cycle integer
awake numeric
brainwt numeric
bodywt numeric

More on programming More on lists More on ggplot More on tidymodels

keep_at

We already know keep() and discard() for filtering lists.
The analogous function keep_at(lst, pred) keeps all
elements of lst whose name satisfies pred. And
discard_at(lst, pred) discards elements.

list(cat = 1, dog = 2, elephant = 3) |>
keep_at(\(name) nchar(name) <= 3)

$cat
[1] 1

$dog
[1] 2
L <- list(cat =1,dog =2,elephant =3) #old school version
L1 <- L[nchar(names(L))<=3]

More on programming More on lists More on ggplot More on tidymodels

head_while and tail_while3

The head_while verb
traverses a list from the
beginning and returns
elements as long as they are
satisfying a given predicate.
After the first
non-conforming element the
process ends.

3Image taken from the purrr cheat sheet, Posit Software, PBC

More on programming More on lists More on ggplot More on tidymodels

head_while and tail_while

The function head_while(lst, pred) returns elements
starting from the beginning of lst until one element didn’t
pass pred.

The function tail_while(lst, pred) does the same, but
starts from the end.

Throw a dice 50 times. What is the longest streak
(from the beginning) of having only 3's or more?
x <- sample(1:6, size = 50, replace = T)
x[1:10]

[1] 3 2 4 1 4 6 6 6 3 2
x |> head_while(\(x) x >= 3)

[1] 3

More on programming More on lists More on ggplot More on tidymodels

Predicates on the whole list

Instead of testing single elements for filtering, we can also test
the whole list:

is_even <- function(x) x %% 2 == 0

3:10 |> every(is_even)
#> [1] FALSE

3:10 |> some(is_even)
#> [1] TRUE

3:10 |> none(is_even)
#> [1] FALSE

More on programming More on lists More on ggplot More on tidymodels

Reduce4

The reduce verb traverses a
list and recursively applies a
function on the current
element and the result of
the last iteration.

4Image taken from the purrr cheat sheet, Posit Software, PBC

More on programming More on lists More on ggplot More on tidymodels

Reduce (with init)

With reduce(lst, fn, .init, .dir) one can recursively
apply fn to each element of lst and the previous result.

At the first iteration the previous result doesn’t exist and
.init is used instead.

The container is traversed in direction dir (default: forward).
A complicated way to write sum(1:3)
1:3 |> reduce(\(acc, nxt) acc + nxt, .init = 0)

[1] 6

More on programming More on lists More on ggplot More on tidymodels

Reduce (without init)

When the .init argument is not provided, the recursion starts
with fn(x[[1]], x[[2]]) instead of fn(.init, x[[1]]).

The done() function can be used to stop the recursion.
limited_paste <- function(acc, nxt) {

if (nchar(acc) > 4) {
done(acc)

} else {
paste(acc, nxt, sep = ".")

}
}
letters |> reduce(limited_paste)

[1] "a.b.c"

More on programming More on lists More on ggplot More on tidymodels

Exercises

Ex1: Implement a function that uses reduce to calculate the
factorial of a natural number.

Ex2: Use reduce to check if every element of a logical vector
is true.

Ex3: Implement a function called compose that has a list of
functions as input and returns their composition, e.g.
f1 <- function(x) {x + 1}
f2 <- function(x) {2 * x}
f3 <- function(x) {2 * (x + 1)}

f4 <- compose(list(f1, f2))
Then f3 == f4

More on programming More on lists More on ggplot More on tidymodels

Section 3

More on ggplot

More on programming More on lists More on ggplot More on tidymodels

Long vs. wide dataframes

Recall that in {ggplot2} every row of the input dataframe is
mapped to one geometrical object.

The object’s visual properties are determined by the columns
of the input dataframe, as specified by the aethetical mapping.

More on programming More on lists More on ggplot More on tidymodels

Long vs. wide dataframes

When a row contains more than one observation, this doesn’t
play well with {ggplot2}.

msleep |> ggplot() +
geom_boxplot(aes(x = sleep_total,

y = factor("sleep_total"))) +
geom_boxplot(aes(x = sleep_rem,

y = factor("sleep_rem")))

sleep_total

sleep_rem

0 5 10 15 20
sleep_total

fa
ct

or
("

sl
ee

p_
to

ta
l")

If we have a lot of observations, this gets very annoying. Also
notice, that the axis labels are not correct.

More on programming More on lists More on ggplot More on tidymodels

pivot_longer5

{ggplot2} builds upon long
(as opposed to wide) format.
The pivot_longer verb
collapses several columns
into two columns, thus
lengthening the dataframe.
Column names go into the
first column and values into
the second.

5Image taken from the tidyr cheat sheet, Posit Software, PBC

More on programming More on lists More on ggplot More on tidymodels

pivot_wider6

The pivot_longer verb
reverses the effect of
pivot_longer.
One column gives the new
column names and the other
column provides the values.

6Image taken from the tidyr cheat sheet, Posit Software, PBC

More on programming More on lists More on ggplot More on tidymodels

Long vs. wide dataframes
Now we can plot the sleep times:
G <- msleep |> pivot_longer(c(sleep_total, sleep_rem),

names_to = "sleep_type",
values_to = "hours")

ggplot(data=G,aes(x = hours, y = sleep_type)) +
geom_boxplot()

sleep_rem

sleep_total

0 5 10 15 20
hours

sl
ee

p_
ty

pe

More on programming More on lists More on ggplot More on tidymodels

Faceting

Faceting is a tool to show different subsets of data in the
same plot. Every group will be displayed in its own facet, but
all facets share the same axes.
Use the facet_wrap() function to add a faceting
specification to the plot. The ~ is part of the syntax (can not
be avoided).

msleep |> ggplot(aes(x = sleep_total, y = sleep_rem)) +
geom_point() + facet_wrap(~vore, nrow = 1)

carni herbi insecti omni NA

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
0

2

4

6

sleep_total

sl
ee

p_
re

m

More on programming More on lists More on ggplot More on tidymodels

Faceting

Faceting also works with two variables:
msleep |> ggplot(aes(x = sleep_total, y = sleep_rem)) +
geom_point() +
facet_grid(vore ~ conservation)

cd domesticated en lc nt vu NA

carni
herbi

insecti
om

ni
N

A

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

0
2
4
6

0
2
4
6

0
2
4
6

0
2
4
6

0
2
4
6

sleep_total

sl
ee

p_
re

m

More on programming More on lists More on ggplot More on tidymodels

Statistical transformations

In scientific plots, we might not just want to show the raw
data, but also some statistical summaries.

For example a regression line through a scatter plot or the
marginal densities along the axes.

The layered nature of {ggplot2} allows us to do this easily.

More on programming More on lists More on ggplot More on tidymodels

Statistical transformations

Example with a smoother (regression):
msleep |> ggplot(aes(x = sleep_total, y = sleep_rem)) +
geom_point() +
geom_smooth()

0

2

4

6

5 10 15 20
sleep_total

sl
ee

p_
re

m

More on programming More on lists More on ggplot More on tidymodels

Statistical transformations

Example visualizing the marginal densities:
msleep |> ggplot(aes(x = sleep_total, y = sleep_rem)) +
geom_point() +
geom_rug()

0

2

4

6

5 10 15 20
sleep_total

sl
ee

p_
re

m

More on programming More on lists More on ggplot More on tidymodels

Statistical transformations

Example with the contour lines of the bivariate density:
msleep |> ggplot(aes(x = sleep_total, y = sleep_rem)) +
geom_point() +
geom_density2d()

0

2

4

6

5 10 15 20
sleep_total

sl
ee

p_
re

m

More on programming More on lists More on ggplot More on tidymodels

Exercise

How many omnivores are in the dataset?

How many hours do domesticated animals sleep on average?

Plot body weight against brain weight. Play around with
different scales (e.g. sqrt-log or log-log). What do you
observe?

Can you find other patterns?

More on programming More on lists More on ggplot More on tidymodels

Section 4

More on tidymodels

More on programming More on lists More on ggplot More on tidymodels

Other models

So far we only learned about the linear model.

But the {tidymodels} framework provides interfaces to
many other models:

Model Name in {tidymodels}

Linear model linear_reg()
Naive Bayes naive_Bayes()
Decision Tree decision_tree()
Random forest rand_forest()
Support Vector Machine svm_linear()
Neural Network mlp()

More on programming More on lists More on ggplot More on tidymodels

Other models

data_split <- msleep |> drop_na() |>
initial_split(prop = 3/4)

model <- rand_forest() |> set_mode("regression")
fitted <- model |>

fit(sleep_total ~ vore + sleep_rem + brainwt,
data = data_split |> training())

fitted |> augment(data_split |> testing()) |>
rmse(truth = sleep_total, .pred)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 2.92

More on programming More on lists More on ggplot More on tidymodels

Preprocessors

If we remove the drop_na() verb in the first line of the
previous slide, we get an error, because the default engine for
the rand_forest() model doesn’t support NAs in the input
data.

Most ML models are picky when it comes to input data: Some
models don’t support factorial/discrete variables; others get
unstable if numerical variables are not normalized and so on…

This is where preprocessors come into play: They are part of
the overall model and transform the raw input data to the
required form for the actual model.

In general, preprocessors need to be trained on the training
data, e.g. for estimating a normalization transformation.

More on programming More on lists More on ggplot More on tidymodels

Preprocessors

In the {tidymodels} framework, one starts with an empty
recipe and then adds preprocessing steps to it:

rec <- recipe(sleep_total ~ vore + sleep_rem + brainwt,
data = msleep) |>

step_impute_mean(all_numeric_predictors()) |>
step_impute_mode(all_string_predictors())

The recipe() functions defines which variables are predictors
and which variable is the outcome.
All preprocessing steps can selectively applied,
e.g. all_predictors() or all_nominal_predictors().

More on programming More on lists More on ggplot More on tidymodels

Preprocessors

To use the preprocessor, one defines a workflow, consisting of
the preprocessor along with the model specification, and
trains both of them:

wflow <- workflow() |>
add_recipe(rec) |>
add_model(model)

fitted <- wflow |> fit(data = data_split |> training())
fitted |> augment(data_split |> testing()) |>

rmse(truth = sleep_total, .pred)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 2.91

More on programming More on lists More on ggplot More on tidymodels

Preprocessors

Some common preprocessors:

step_dummy() does one-hot-encoding of all selected variables
step_impute_bag does imputation using bagged trees
step_YeoJohnson() tries to normalize all selected variables
(mean = 0, sd = 1)
step_nzv() throws away all selected variables with near-zero
variance
step_corr() throws away all selected variables that strongly
correlate

More on programming More on lists More on ggplot More on tidymodels

Different metrics

So far we only looked at the R-squared metric to assess the
predictive power of our ML models. You already learned about
other metrics and {tidymodels} supports a wide range of metrics:

sens() and spec() measure sensitivity and specificity (binary
classification)
precision() and recall() measure precision and recall
(binary classification)
accuracy() measures the accuracy (binary classification)
kap() measures Kohen’s kappa (multiclass classification)
roc_auc() measures the Area under the Receiver Operator
Curve (binary class probability classification)
rmse() and mae() measure the root-mean-squared error and
the mean absolute error

More on programming More on lists More on ggplot More on tidymodels

Different metrics

There are many more (and exotic) quality measures.

A full list is available by typing help(package =
yardstick) in the R console.

More on programming More on lists More on ggplot More on tidymodels

Exercise

Remove the name column from the msleep dataset and
transform string columns to factorial columns. Do a
training-testing split.
Define a preprocessor for the msleep dataset:
One-hot-encoding of factorial variables and
mean/mode-imputation for numerical variables.
Train a single-layer neural network on the training data for
predicting sleep_rem
Plot true vs. estimated sleep_rem and report the rmse on the
test data

	More on programming
	More on lists
	More on ggplot
	More on tidymodels

