Unit 03:

Remus Luping and the msleep dataset
Applied Al with R

Ferdinand Ferber and Wolfgang Trutschnig

Paris Lodron Universitit Salzburg

3/4/24

Table of contents |

@ More on programming
© More on lists

© More on ggplot

@ More on tidymodels

Remus Lupin and the msleep dataset

Al generated image for the prompt “Remus Lupin sleeping in front
of a computer in his office at Hogwards with a full moon shining
through the window.”

Remus Lupin and the msleep dataset

@ Remus Lupin messed up his sleep-cycle after the birth of his
son. As half-werewolf, half-human, how much sleep does he
need every night in order to stay functional?

@ To answer this question, Lupin analyses the msleep dataset,
containing information like average sleep time, REM sleep
time, brain weight, etc. for a wide range of animals.

@ Will it help him hitting the right balance between his beauty
sleep and the fight against the Dark Lord?

More on programming
®00000

Section 1

More on programming

More on programming
0O@0000

Default arguments

@ We can specify default arguments to a function. The caller
can overwrite those arguments.

myfun <- function(x, y = 1) {

c(x, y)

myfun(3)

[1] 31
myfun(4, 5)

[1] 4 5

More on programming
[e]e] lelele}

Dot-dot-dot

@ Special syntax ... (pronounced dot-dot-dot) to capture any
number of additional arguments and to redirect them.

myfun <- function(type, vec, ...) {
if (type == "mean") {
mean(vec, ...)
} else {
sum(vec, ...)
}
}

myfun("mean", c(1, 2, 3, NA), na.rm = T)

[1] 2
myfun("sum", c(1, 2, 3, NA))

[1] NA

More on programming
[e]e]e] lele}

Dot-dot-dot

One can also use 1ist(...) to capture the additional arguments
as a named list.

myfun <- function(type, ...) {
vec <- 1list(...) [|> as.numeric()
if (type == "mean") {
mean (vec)
} else {
sum(vec)
}
}

myfun("mean", 1, 2, 3)

(11 2

More on programming
0000e0

Closures

@ Closures are one of the most important concepts in functional
programming: a function returns another function that has
free variables (variables not defined locally).

plus <- function(a) {
inner_fun <- function(b) {
a+b # inner_ fun closes over "a’

3

return(inner_ fun)

plus_two <- plus(2)
plus_three <- plus(3)
c(plus_two(10), plus_three(20))

[1] 12 23

More on programming
00000e

Exercise

@ Create a function pick() that takes as an argument an index
i and returns a function that maps a vector x to x[[i]].

e So

msleep |> map(pick(5))

@ should be equivalent to

msleep |> map(function(x) x[[5]])

More on lists
0000000000000 000

Section 2

More on lists

More on lists

O@00000000000000

fun(m) The map2 verb traverses two lists
map2((M| (M) fun,..) —» fun(l,M,..)>))
fun(M. at the same time, applying a
function for every pair of
elements.

limage taken from the purrr cheat sheet, Posit Software, PBC

More on lists

0O0@0000000000000

@ Sometimes we want to traverse two lists at the same time and
apply functions to both of them (classical do.call(fun,1lst)
only works for one function).

@ This is what map2(1st1, 1st2, fun) allows us to do:

by_cyl <- mtcars |> split(mtcars$cyl)
mods <- by_cyl [> map(\(df) 1m(mpg ~ wt, data = df))
Pred <- map2(mods, by_cyl, predict)

@ The chunks above first splits the data by cyl, fits a linear
model to each group, and then applies the model to the data.

More on lists
0008000000000 000

@ Here's a (more or less) base R version doing the same.

@ Easier to understand but more tedious to code:

by_cyl <- mtcars |> split(mtcars$cyl)
models <- vector("list",length=length(by_cyl))
predictions <- models

for(i in 1:length(by_cyl)){
models[[i]] <- 1m(mpg ~ wt, data = by_cyl[[il])
}
for(i in 1:length(by_cyl)){
predictions[[i]] <- predict(models[[il],
newdata = by_cyl[[i]])

More on lists

O000@00000000000

@ A second example illustrating map2(1st1, 1st2, fun)

myargs <- list(c(1,2,3), c(9,8,7))
myops <- list("sum", "mean")

myargs |>
map(\(vec) as.list(vec)) [>

map2_int (myops, \(arg, op) do.call(op, arg))

[1]1 6 9

More on lists

0000080000000 000

Y) © The map_if verb applies a

d transformation only to
b . b . elements that satisfy a given
predicate. All other
C elements remain untouched.
d

2|mage taken from the purrr cheat sheet, Posit Software, PBC

More on lists
000000e000000000

o It is always possible to

use

if...else in the function that

gets mapped over a co
for simple cases there i

ntainer. But
s a special

case map_if (cond, fn).
@ For all elements not satisfying the

condition, the identity

transformation is applied instead.

Apply the function “as.factor-

only for elements
the condition “is.
msleep |> map_if(is.
as.

map_chr(class)

satisfying
character”
character,
factor) |>

Class
name factor
genus factor
vore factor
order factor
conservation factor
sleep_total numeric
sleep_rem numeric
sleep_cycle numeric
awake numeric
brainwt numeric
bodywt numeric

More on lists

0O000000e00000000

@ The function map_at(cond, fn)
is similar, but tests on the
indices/names and not on the
elements.

msleep [>
map_at(\(col) col [>
startsWith("sleep"),
as.integer) |>
map_chr(class)

Class
name character
genus character
vore character
order character
conservation character
sleep_total integer
sleep_rem integer
sleep_cycle integer
awake numeric
brainwt numeric
bodywt numeric

More on lists
00000000 e0000000

@ We already know keep() and discard() for filtering lists.

@ The analogous function keep_at(1st, pred) keeps all
elements of 1st whose name satisfies pred. And
discard_at(1lst, pred) discards elements.

list(cat = 1, dog = 2, elephant = 3) |>

keep_at(\ (name) nchar(name) <= 3)

$cat
[1]1 1

$dog
(1] 2

L <- list(cat =1,dog =2,elephant =3) #o0ld school version
L1 <- L[nchar(names(L))<=3]

More on lists
000000000 e000000

head_while and tail_while3

—> traverses a list from the
beginning and returns

o) @ The head_while verb
a

elements as long as they are

C . satisfying a given predicate.
d o After the first
\ / non-conforming element the

process ends.

3lmage taken from the purrr cheat sheet, Posit Software, PBC

More on lists
0000000000 e00000

head__while and tail_while

@ The function head_while(lst, pred) returns elements
starting from the beginning of 1st until one element didn't
pass pred.

@ The function tail_while(lst, pred) does the same, but
starts from the end.

Throw a dice 50 times. What is the longest streak
(from the beginning) of having only 3's or more?
x <- sample(1l:6, size = 50, replace = T)

x[1:10]

[1] 3241466632

x |> head_while(\(x) x >= 3)

[1] 3

More on lists
00000000000 e0000

Predicates on the whole list

@ Instead of testing single elements for filtering, we can also test
the whole list:

is_even <- function(x) x %% 2 ==

3:10 |> every(is_even)
#> [1] FALSE

3:10 |> some(is_even)
#> [1] TRUE

3:10 |> none(is_even)
#> [1] FALSE

More on lists
00000000000 0e000

Reduce*

a b
func+(2 B & 4)—func(=,m)
e

func(l,c)

func(m, d)

—
H—n

@ The reduce verb traverses a
list and recursively applies a
function on the current
element and the result of
the last iteration.

*Image taken from the purrr cheat sheet, Posit Software, PBC

More on lists
0000000000000 e00

Reduce (with init)

o With reduce(lst, fn, .init, .dir) one can recursively
apply fn to each element of 1st and the previous result.

@ At the first iteration the previous result doesn't exist and
.init is used instead.

@ The container is traversed in direction dir (default: forward).

A complicated way to write sum(1:3)
1:3 |> reduce(\(acc, nxt) acc + nxt, .init = 0)

(1] 6

More on lists
0000000000000 0e0

Reduce (without init)

@ When the .init argument is not provided, the recursion starts
with fn(x[[11], x[[2]1]) instead of fn(.init, x[[1]1]).

@ The done () function can be used to stop the recursion.

limited_paste <- function(acc, nxt) {
if (nchar(acc) > 4) {
done (acc)
} else {
paste(acc, nxt, sep = ".")

}

letters |> reduce(limited_paste)

[1] "a.b.c"

More on lists
0000000000000 00e

Exercises

@ Ex1: Implement a function that uses reduce to calculate the
factorial of a natural number.

@ Ex2: Use reduce to check if every element of a logical vector
is true.

@ Ex3: Implement a function called compose that has a list of
functions as input and returns their composition, e.g.

f1 <- function(x) {x + 1}
f2 <- function(x) {2 * x}
f3 <- function(x) {2 * (x + 1)}

f4 <- compose(list(f1l, £2))
Then f3 == f4

More on ggplot
000000000000

Section 3

More on ggplot

More on ggplot
0O@00000000000

Long vs. wide dataframes

@ Recall that in {ggplot2} every row of the input dataframe is
mapped to one geometrical object.

@ The object's visual properties are determined by the columns
of the input dataframe, as specified by the aethetical mapping.

More on ggplot
0080000000000

Long vs. wide dataframes

factor("sleep_total")
»

@ When a row contains more than one observation, this doesn’t
play well with {ggplot2}.

msleep |> ggplot() +
geom_boxplot(aes(x = sleep_total,
y = factor("sleep_total"))) +
geom_boxplot (aes(x = sleep_rem,
y = factor("sleep_rem")))

0 5 10 15 20
sleep_total

o If we have a lot of observations, this gets very annoying. Also
notice, that the axis labels are not correct.

pivot_longer®

More on ggplot
[ee]e] lelelelelelelele]e]

| country| | 2000 | | country| year [cases |
A 07K 2K 5 0.7K
B 37K 80K 37K
C 212K 218K 212K
| 2000 RS
[2000 |I¥:ITS
2000 JEIETS

OW>»0 >

o {ggplot2} builds upon long
(as opposed to wide) format.

@ The pivot_longer verb
collapses several columns
into two columns, thus
lengthening the dataframe.

@ Column names go into the
first column and values into
the second.

5Image taken from the tidyr cheat sheet, Posit Software, PBC

pivot_wider®

More on ggplot
[ee]ele] lelelelelelele]e]

1999

REEEN pop | |9M

2000 2K

2000 IFTTM 20m

1999 37K

1999 [IFFTH 172m

2000 80K

2000 IFFTM 174m

1999 212K

0000 WW®®>>>>

0CoOwW®m> >

1999
2000
1999
2000
1999
2000

0.7K
2K
37K
80K
212K
213K

|9M

@ The pivot_longer verb
o reverses the effect of
174M
i pivot_longer.
@ One column gives the new
column names and the other

column provides the values.

Slmage taken from the tidyr cheat sheet, Posit Software, PBC

More on ggplot
[e]e]ele]e] lelelelelele]e]

Long vs. wide dataframes

Now we can plot the sleep times:
G <- msleep |> pivot_longer(c(sleep_total, sleep_rem),
names_to = "sleep_type",
values_to = "hours")

ggplot(data=G,aes(x = hours, y = sleep_type)) +

geom_boxplot ()

sleep_total -

sleep_type

0 10
hours

More on ggplot
[e]e]ele]ele] lelelelele]e]

Faceting

@ Faceting is a tool to show different subsets of data in the
same plot. Every group will be displayed in its own facet, but
all facets share the same axes

@ Use the facet_wrap() function to add a faceting
specification to the plot. The ~ is part of the syntax (can not
be avoided).

msleep |> ggplot(aes(x = sleep_total, y = sleep_rem)) +

geom_point() + facet_wrap(~vore, nrow = 1)

carni herbi insecti omni NA

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
sleep_total

More on ggplot
0O000000e00000

Faceting

@ Faceting also works with two variables:

msleep |> ggplot(aes(x = sleep_total, y = sleep_rem)) +
geom_point () +
facet_grid(vore ~ conservation)

cd domesticated en Ic nt vu NA
& .
41 8
LI . 5
2- . . . * E
0-a .
6-
4- o g
2- n 9 ©* .) g
. . o s .« .
5 6- . -
3 B
14- . 2
g2- . o g
w 0-
6- = .
4- . E
24 . <t 4 e Z
0-
6-
4= z
2- ¥ ® e >
o o

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 2 5 120 15 20 5 120 15 20
sleep_total

More on ggplot
0000000080000

Statistical transformations

@ In scientific plots, we might not just want to show the raw
data, but also some statistical summaries.

@ For example a regression line through a scatter plot or the
marginal densities along the axes.

@ The layered nature of {ggplot2} allows us to do this easily.

More on ggplot
0000000008000

Statistical transformations

e Example with a smoother (regression):

msleep |> ggplot(aes(x = sleep_total, y = sleep_rem)) +
geom_point () +
geom_smooth ()

10
sleep_total

More on ggplot
0000000000800

Statistical transformations

@ Example visualizing the marginal densities:

msleep |> ggplot(aes(x = sleep_total, y = sleep_rem)) +
geom_point () +
geom_rug()

e

.

E .
0 | L L T |1 | I I 0 I L T S [A B 1 [N
5 10 15 20

sleep_total

More on ggplot
0000000000080

Statistical transformations

@ Example with the contour lines of the bivariate density:

msleep |> ggplot(aes(x = sleep_total, y = sleep_rem)) +
geom_point () +
geom_density2d ()

0
sleep_total

More on ggplot
000000000000 e

Exercise

@ How many omnivores are in the dataset?
@ How many hours do domesticated animals sleep on average?

@ Plot body weight against brain weight. Play around with
different scales (e.g. sqrt-log or log-log). What do you
observe?

o Can you find other patterns?

More on tidymodels
0000000000

Section 4

More on tidymodels

More on tidymodels
0@00000000

Other models

@ So far we only learned about the linear model.

@ But the {tidymodels} framework provides interfaces to
many other models:

Model Name in {tidymodels}
Linear model linear_reg()

Naive Bayes naive_Bayes ()
Decision Tree decision_tree()
Random forest rand_forest()

Support Vector Machine svm_linear ()
Neural Network mlp()

More on tidymodels
0000000000

Other models

data_split <- msleep |> drop_na() |[>
initial_split(prop = 3/4)

model <- rand_forest() |> set_mode("regression")

fitted <- model |>
fit(sleep_total ~ vore + sleep_rem + brainwt,

data = data_split |> training())

fitted |> augment(data_split |> testing()) [>

rmse(truth = sleep_total, .pred)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 rmse standard 2.92

More on tidymodels
[e]e]e] lelelele]ele}

Preprocessors

o If we remove the drop_na() verb in the first line of the
previous slide, we get an error, because the default engine for
the rand_forest () model doesn’'t support NAs in the input
data.

@ Most ML models are picky when it comes to input data: Some
models don't support factorial /discrete variables; others get
unstable if numerical variables are not normalized and so on..

@ This is where preprocessors come into play: They are part of
the overall model and transform the raw input data to the
required form for the actual model.

@ In general, preprocessors need to be trained on the training
data, e.g. for estimating a normalization transformation.

More on tidymodels
[e]e]e]e] lelele]ele}

Preprocessors

@ In the {tidymodels} framework, one starts with an empty
recipe and then adds preprocessing steps to it:

rec <- recipe(sleep_total ~ vore + sleep_rem + brainwt,
data = msleep) |>
step_impute_mean(all_numeric_predictors()) |>
step_impute_mode(all_string predictors())

@ The recipe() functions defines which variables are predictors
and which variable is the outcome.

@ All preprocessing steps can selectively applied,
e.g. all_predictors() or all_nominal_predictors().

More on tidymodels
[e]e]e]e]e] lelelele]

Preprocessors

@ To use the preprocessor, one defines a workflow, consisting of
the preprocessor along with the model specification, and
trains both of them:

wflow <- workflow() [>
add_recipe(rec) |>
add_model (model)
fitted <- wflow |> fit(data = data_split |> training())
fitted |> augment(data_split |> testing()) [>
rmse(truth = sleep_total, .pred)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 rmse standard 2.91

More on tidymodels
000000e000

Preprocessors

Some common preprocessors:

o step_dummy () does one-hot-encoding of all selected variables

o step_impute_bag does imputation using bagged trees

@ step_YeoJohnson() tries to normalize all selected variables
(mean =0, sd = 1)

@ step_nzv() throws away all selected variables with near-zero
variance

@ step_corr() throws away all selected variables that strongly
correlate

More on tidymodels
0000000800

Different metrics

So far we only looked at the R-squared metric to assess the
predictive power of our ML models. You already learned about
other metrics and {tidymodels} supports a wide range of metrics:

e sens() and spec() measure sensitivity and specificity (binary
classification)

@ precision() and recall() measure precision and recall
(binary classification)

@ accuracy() measures the accuracy (binary classification)

@ kap() measures Kohen's kappa (multiclass classification)

@ roc_auc() measures the Area under the Receiver Operator
Curve (binary class probability classification)

o rmse() and mae() measure the root-mean-squared error and
the mean absolute error

More on tidymodels
0000000080

Different metrics

@ There are many more (and exotic) quality measures.

o A full list is available by typing help(package =
yardstick) in the R console.

More on tidymodels
000000000e

Exercise

@ Remove the name column from the msleep dataset and
transform string columns to factorial columns. Do a
training-testing split.

@ Define a preprocessor for the msleep dataset:
One-hot-encoding of factorial variables and
mean/mode-imputation for numerical variables.

@ Train a single-layer neural network on the training data for
predicting sleep_rem

@ Plot true vs. estimated sleep_rem and report the rmse on the
test data

	More on programming
	More on lists
	More on ggplot
	More on tidymodels

