
Advanced data wrangling Advanced data visualization

Unit 04:
Albus Dumbledore and the nycflights13 dataset

Applied AI with R

Ferdinand Ferber and Wolfgang Trutschnig

Paris Lodron Universität Salzburg

4/20/24

Advanced data wrangling Advanced data visualization

Table of contents I

1 Advanced data wrangling

2 Advanced data visualization

Advanced data wrangling Advanced data visualization

Albus Dumbledore and the nycflights13 dataset

AI generated image for the prompt “Albus Dumbledore in his office
in Hogwards, casting a powerful spell in front of his computer.”

Advanced data wrangling Advanced data visualization

Albus Dumbledore and the nycflights13 dataset

Lord Voldemort’s Deat Eater found a new target for chaos
and dispair in the Muggle world - messing with air traffic,
causing delays and cancellation.

To stop them, Dumbledore needs to be one step ahead of
Voldemort’s plans.

Can he find the pattern in the nycflights13 dataset that
reaveals the Death Eater’s plan?

Advanced data wrangling Advanced data visualization

The nycflights13 dataset

We will use the nycflights13 dataset, which consists of several
dataframes.

This dataset is provided by the nycflights13 package.

Please install and load this package.

Advanced data wrangling Advanced data visualization

The nycflights13 dataset

Advanced data wrangling Advanced data visualization

Section 1

Advanced data wrangling

Advanced data wrangling Advanced data visualization

Advanced data wrangling

So far, we learned about the {dplyr} verbs select(),
filter(), mutate(), rename(), arrange() and the family
of slice_*() verbs to transform dataframes.

Now we will introduce grouped dataframes and how these
verbs interact with them.

We’ll see that grouping dataframes hugely increase our data
wrangling capabilities.

Advanced data wrangling Advanced data visualization

Grouping1

The group_by verb modifies
the group structure of the
input dataframe, which
changes the behaviour of
most verbs.

1Image taken from the dplyr cheat sheet, Posit Software, PBC

Advanced data wrangling Advanced data visualization

Inspecting the group structure

The group_by() verbs takes a selection of columns and
places all observations that are equal on those columns into
the same group.

For debugging purposes there is a function that returns the
grouping variables as a character vector:

Put all flights on the same date into the same group
flights |>

group_by(year, month, day) |>
group_vars()

[1] "year" "month" "day"

Advanced data wrangling Advanced data visualization

Ungroup

The group structure can be (partially) removed by the
ungroup() verb:

flights |>
group_by(year, month, day) |>
ungroup() |>
group_vars()

character(0)
flights |>

group_by(year, month, day) |>
ungroup(month) |>
group_vars()

[1] "year" "day"

Advanced data wrangling Advanced data visualization

Summarize2

The summarize verb
calculates
aggregate/summary values
for each column of the input
dataframe.

2Image taken from the dplyr cheat sheet, Posit Software, PBC

Advanced data wrangling Advanced data visualization

Summarize

The summarize() verb on an ungrouped dataframe is a bit
boring.
It returns a dataframe consisting of the specified columns and
one row, where the entry is given by the provided summary
expression.

flights |>
summarize(mean_dep_delay = mean(dep_delay, na.rm=T),

mean_arr_delay = mean(arr_delay, na.rm=T))

A tibble: 1 x 2
mean_dep_delay mean_arr_delay

<dbl> <dbl>
1 12.6 6.90

Advanced data wrangling Advanced data visualization

Summarize

But on grouped dataframes, the summary is calculated for
each group independently.

flights |>
group_by(year, month, day) |>
summarize(mean_dep_delay = mean(dep_delay, na.rm=T),

mean_arr_delay = mean(arr_delay, na.rm=T)) |>

year month day mean_dep_delay mean_arr_delay
2013 12 22 29.2398649 23.8995485
2013 3 15 12.4356334 0.5907216
2013 4 26 18.5924413 21.3721881
2013 11 11 3.3387755 -4.5240041
2013 9 5 -0.3877973 -15.5403727

Advanced data wrangling Advanced data visualization

Summarize
The .groups argument controls how the output dataframe is
grouped.
The default is like drop_last, but with a warning.

df <- flights |> group_by(year, month, day)

df |> summarize(n = n(), .groups = "drop_last") |>
group_vars()

[1] "year" "month"
df |> summarize(n = n(), .groups = "keep") |> group_vars()

[1] "year" "month" "day"
df |> summarize(n = n(), .groups = "drop") |> group_vars()

character(0)

Advanced data wrangling Advanced data visualization

Summary functions3

Some useful standard
summary functions: sum()
mean()
median()
min()
max()
n()
n_distinct()

Important: Notice, that you can also use any function that
maps an atomic vector to a scalar value as a summary
function.
Nowadays the standard aggregation technique in R.

3Image taken from the dplyr cheat sheet, Posit Software, PBC

Advanced data wrangling Advanced data visualization

mutate

mutate will be applied for each group independently:
flights |>

mutate(rank_global = min_rank(arr_delay)) |>
group_by(carrier) |>
mutate(rank_group = min_rank(arr_delay))

carrier flight arr_delay rank_global rank_group
EV 4998 -18 70876 7892
B6 74 21 260489 41844
DL 2331 -4 165574 27224
VX 169 1 194343 3371
B6 653 7 221520 35095

Advanced data wrangling Advanced data visualization

filter
filter() can be used in combination with a summary
function.

flights |>
group_by(carrier) |>
filter(distance == max(distance))

carrier flight origin dest distance
DL 435 JFK SFO 2586
VX 29 JFK SFO 2586
DL 2065 JFK SFO 2586
AS 15 EWR SEA 2402
AA 85 JFK SFO 2586

…slice_max() would be more readable/convenient here:

Advanced data wrangling Advanced data visualization

Slicing

The slice_*() verbs also work group-wise:
flights |>

group_by(origin, dest) |>
slice_max(dep_delay)

carrier flight origin dest dep_delay
B6 163 JFK SRQ 194
UA 503 EWR AUS 351
B6 1185 JFK RDU 394
DL 2047 LGA ATL 898
EV 4885 LGA ILM 168

Advanced data wrangling Advanced data visualization

Exercise

How does the average departure delay develop over months?
Use group_by and summarize to calculate it and plot it
using a suitable {ggplot2} geom.

Which of the three NYC airports have a better on-time
percentage for departing flights?

Hint: First classify every flight as on time or delayed. Then
group flights by origin airport and calculate the percentage
using the summarize verb. Use sum() and n().

Which plane (given by its tailnum) has the highest average
speed?

Advanced data wrangling Advanced data visualization

mutate and summarize on multiple columns

Sometimes it’s useful to apply the same transformation across
multiple columns.
across has two primary arguments: The first arguments
selects columns to operate on (with syntax like in select)
and the second is a (list of) function(s) to apply to each
selected column.

flights |>
summarize(dep_delay = mean(dep_delay),

arr_delay = mean(arr_delay))

flights |>
summarize(across(c(dep_delay, arr_delay), mean))

Advanced data wrangling Advanced data visualization

where

To select columns satisfying a given predicate function, use
where:

flights |>
summarize(across(where(is.character), n_distinct))

A tibble: 1 x 4
carrier tailnum origin dest

<int> <int> <int> <int>
1 16 4044 3 105

Advanced data wrangling Advanced data visualization

filter on multiple columns

There are two special companion functions for filter to do
filtering based on multiple columns:
if_any(.cols, .fns) keeps all rows where the predicate is
true for at least one selected columns. Analogous for
if_all(.cols, .fns).

Keeps all rows where at least one column is not NA
flights |>

filter(if_any(everything(), \(x) !is.na(x)))

Advanced data wrangling Advanced data visualization

Exercise

Use mutate() together with across() to transform every
string column to a factorial column.

Calculate the median for every numerical column.

Use filter() and if_any() or if_all() to select all flights
that had more than 60 minutes delay in any column
containing the word “delay”.

Advanced data wrangling Advanced data visualization

Combining dataframes

Data comes often in a relational form, where it is split
across a number of tables/dataframes which contain cross
references.

There are three families of verbs that work with two tables at
a time:

Joins add new variables to a dataframe from matching rows
in another

Filtering joins filter observations from a dataframe based on
whether or not they match an observation in another

Set operations treat observations as set elements

Advanced data wrangling Advanced data visualization

Inner Join4

An inner join matches pairs
of observations whenever
their keys are equal.

Syntax in R: inner_join(x, y, by)

the by argument is option: per default, R uses ALL column
names appearing in both dataframes (also for the other
joining types).

4Image taken from R for Data Science, Wickham and Grolemund

Advanced data wrangling Advanced data visualization

Left Join5

A left join keeps all
observations in x and adds
matches from y.
If no match is found, all
variables are filled with NA

Syntax in R: left_join(x, y, by)

5Image taken from R for Data Science, Wickham and Grolemund

Advanced data wrangling Advanced data visualization

Right Join6

A right join keeps all
observations in y and adds
matches from x.
If no match is found, all
variables are filled with NA

Syntax in R: right_join(x, y, by)

6Image taken from R for Data Science, Wickham and Grolemund

Advanced data wrangling Advanced data visualization

Full Join7

A full join keeps all
observations in x and y.

Syntax in R: full_join(x, y, by)

7Image taken from R for Data Science, Wickham and Grolemund

Advanced data wrangling Advanced data visualization

Example: Joins

In the following example we have a natural left join (the join
variables are all common variables of both dataframes).
Columns year:origin are the keys, column dest is from
flights and column temp is from weather.

flights |> left_join(weather) |>
select(year:day, hour, origin, dest, temp)

year month day hour origin dest temp
2013 4 30 11 JFK LAX 62.06
2013 7 24 10 EWR ATL 82.94
2013 5 13 22 LGA SYR 50.00
2013 8 25 19 LGA ORD 75.02
2013 6 6 16 JFK LAX 64.94

Advanced data wrangling Advanced data visualization

Join attributes
We can control the join attributes via the by argument.
If the variable names differ, we use join_by(leftcol ==
rightcol) to join on the columns leftcol and rightcol.
If the variable name is the same in both dataframes, on can
use the shortcut join_by(commoncol).

flights |> left_join(planes, by = join_by(tailnum)) |>
select(origin, dest, tailnum, model)

origin dest tailnum model
JFK BUF N656JB A320-232
LGA MCO N984DL MD-88
EWR IND N13949 EMB-145LR
JFK DCA N930XJ CL-600-2D24
JFK SAT N924XJ CL-600-2D24

Advanced data wrangling Advanced data visualization

Join suffix
When a non-join-attribute variable is in both dataframes, a
suffix will be appended to resolve disambiguities.
The default suffix is .x for the left table and .y for the right
one. This can be modified:

flights |>
left_join(planes, by = join_by(tailnum),

suffix = c(".flight", ".plane")) |>
select(year.flight, origin, dest,

tailnum, year.plane)

year.flight origin dest tailnum year.plane
2013 EWR TUL N41104 2002
2013 JFK BOS N3CMAA NA
2013 JFK JAX N229JB 2006
2013 EWR FLL N16234 1999

Advanced data wrangling Advanced data visualization

Exercise

Recreate the following dataframe:

year month day holiday
2013 1 1 New Years Day
2013 7 4 Independence Day
2013 11 29 Thanksgiving Day
2013 12 25 Christmas Day

Join the flights dataframe with this special_days
dataframe. Which type of join is appropriate?

Compare the number and delays of flights on normal days and
on these special days.

Produce an informative plot on the comparison.

Advanced data wrangling Advanced data visualization

Semi Join8

A semi join returns all rows
of x that have a match in y,
i.e. every observation of x
that would be included in an
inner join.

Syntax in R: semi_join(x, y, by)

8Image taken from R for Data Science, Wickham and Grolemund

Advanced data wrangling Advanced data visualization

Anti Join9

An anti join returns all rows
of x that have no match in y,
i.e. every observation of x
that would be excluded in
an inner join.
It can be seen as a filter via
different dataframes.

Syntax in R: anti_join(x, y, by)

9Image taken from R for Data Science, Wickham and Grolemund

Advanced data wrangling Advanced data visualization

Exercise

Use an appropriate filtering join to filter to all airports (in the
airport dataframe) that appear as a destination in the
flights dataframe

Advanced data wrangling Advanced data visualization

Exercise

Consider the following code (install the maps package first):
your_filtered_airports |>
ggplot(aes(x = lon, y = lat)) + borders("state") +
geom_point() + coord_quickmap()

20

30

40

50

60

−160 −140 −120 −100 −80
lon

la
t

Colour each airport by the average destination delay.

Advanced data wrangling Advanced data visualization

Exercise

Use an appropriate filtering join to figure out which flights
don’t have a tailnum that corresponds to an entry in the
planes dataframe

What carriers are dominating this list?

What kind of flights are those in
anti_join(flights, airports,

by = join_by(dest == faa))

Advanced data wrangling Advanced data visualization

Set operations

One can treat dataframes as sets (of rows) and do the usual set
operations on them. All operations ingnore duplicates.

intersect(df1, df2) returns the common rows
union(df1, df2) returns all rows of both dataframes
setdiff(df1, df2) returns all rows in df1 that are not in
df2
symdiff(df1, df2) returns the symmetric difference, i.e. all
rows that are in df1 but not in df2 plus all rows that are in
df2 but not in df1

Advanced data wrangling Advanced data visualization

Binding columns10

Returns df1 and df2 placed
side by side as a single table.

Syntax in R: bind_cols(df1, df2)

10Image taken from the dplyr cheat sheet, Posit Software, PBC

Advanced data wrangling Advanced data visualization

Binding rows11

Returns df1 and df2 placed
on top of the other as a
single table.

Syntax in R: bind_rows(df1, df2)

11Image taken from the dplyr cheat sheet, Posit Software, PBC

Advanced data wrangling Advanced data visualization

Nesting

R allows dataframes to contain columns of dataframes.
This is called a nested dataframe and it’s useful for functions
that work on whole dataframes (e.g. modeling functions).

flights |> group_by(origin) |> nest()

A tibble: 3 x 2
Groups: origin [3]

origin data
<chr> <list>

1 EWR <tibble [120,835 x 18]>
2 LGA <tibble [104,662 x 18]>
3 JFK <tibble [111,279 x 18]>

Advanced data wrangling Advanced data visualization

Unnesting

The inverse operation of nest() is unnest(col) and will
expand all dataframes in col.

Advanced data wrangling Advanced data visualization

Example: Nesting
Nesting can be very useful when we want to work with groups
as a whole.

Randomly select two groups
flights |>

group_by(tailnum) |>
nest() |>
ungroup() |>
slice_sample(n = 2) |>
unnest(data)

tailnum year month day dep_time
N615QX 2013 6 18 1053
N615QX 2013 3 6 1506
N543UW 2013 5 1 1257

Advanced data wrangling Advanced data visualization

Section 2

Advanced data visualization

Advanced data wrangling Advanced data visualization

Advanced data visualization

So far we acquired a fair amount of {ggplot2} knowledge
that lets us create a wide range of useful and beutiful plots.

Now it’s time to dig deeper into the grammar of graphics and
the underlaying principles of {ggplot2}.

Advanced data wrangling Advanced data visualization

The components of a ggplot

Every ggplot consists of

A default dataframe
One or more layers
For each mapped aeasthetics one scale
A coordinate system
A faceting specification

Every aesthetics comes with a default scale. The default coordiate
system is coord_cartesian() and the default faceting
specification is facet_null().

Advanced data wrangling Advanced data visualization

The components of a layer

Each layer consists of - An input dataframe - A selected geom - An
aesthetical mapping - A statistical transformation - A position
adjustment

You already know the input dataframe, the geom and the
aesthetical mapping. If no input dataframe is supplied for the layer,
then the default dataframe for the whole plot will be used
automatically.

Advanced data wrangling Advanced data visualization

Types of geoms

There are two types of geoms:

Individual geoms (e.g. points) correspond to exactly one
observation in the input dataframe.

Collective geoms (e.g. boxplots) correspond to a group of
observations in the input dataframe.

Every geom has a set of aesthetics (visual properties). A point
for example has an x position, a y position, a colour, a shape
and so on. A boxplot has a width, a median value, a lower
and upper hinge (the 25% and 75% quantiles) and so on.

The aesthetic mapping defines which column in the input
dataframe corresponds to which aesthetics. In the boxplot
case there are obviously no columns for median and quantiles
in the input dataframe, so how does that work?

Advanced data wrangling Advanced data visualization

Sublayer modularity12

The input dataframe undergoes several transformations before
it is ready for drawing:

12This image was taken from the manual of {ggtrace}

Advanced data wrangling Advanced data visualization

Sublayer modularity

In the first step, {ggplot2}
takes the input dataframe
and computes, based on the
start aesthetical mapping, a
new dataframe (usually this
is just a select operation,
but you can do everying you
can do in a mutate() call
also in an aes() call).
Then the statistical
transformation is applied
(e.g. calculating the quantile
information for boxplot)

Advanced data wrangling Advanced data visualization

Sublayer modularity

Then the geom can
transform this dataframe
further (usually it doesn’t)
and the scales are applied,
mapping from the data
space to the aesthetical
space
Finall, the after scales
aesthetical mapping is
applied and the result
(called layer data) is shipped
back to the drawing engine.

Advanced data wrangling Advanced data visualization

Sublayer modularity

Usually, the user doesn’t need to think about the fact that
there are three different aesthetical mappings.
The following calls are identical due to {ggplot2}s defaults:

flights |> ggplot() +
geom_bar(aes(x = origin, y = after_stat(count)))

flights |> ggplot() +
geom_bar(aes(x = origin))

Advanced data wrangling Advanced data visualization

Statistical transformations

Notice that every layer has a statistical transformation. For
geom_point() we can see that it is the identity transformation:
geom_point

function (mapping = NULL, data = NULL, stat = "identity", position = "identity",
..., na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)

{
layer(data = data, mapping = mapping, stat = stat, geom = GeomPoint,

position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list2(na.rm = na.rm, ...))

}
<bytecode: 0x000001fb99ad0898>
<environment: namespace:ggplot2>

Advanced data wrangling Advanced data visualization

Statistical transformations

As you saw on the previous slide, you can override the stat
argument of a layer. Here we use the count stat on a point
geom:

flights |> ggplot() +
geom_point(aes(x = origin, y = after_stat(count)),

stat = "count")

105000

110000

115000

120000

EWR JFK LGA
origin

co
un

t

Advanced data wrangling Advanced data visualization

Scales

Consider the following plot:
flights |> ggplot(aes(x = dep_delay, y = arr_delay,

colour = origin,
size = air_time)) +

geom_point(alpha = 0.3)

0

100

200

300

400

0 100 200 300
dep_delay

ar
r_

de
la

y

air_time

200

400

600

origin

EWR

JFK

LGA

Advanced data wrangling Advanced data visualization

Scales

In the last example we mapped the column origin to the
aesthetics colour, but we never specified which origin airport
(JFK, EWR, LGA) got which colour (red, green, …). This was
done by the scale of that aesthetics.
A scale consists of a function that maps numeric values (
continuous scale) or factorial values (discrete scale) to the
possible values of the aesthetics, and its inverse. The inverse
function is called guide and is used to generate the legends
(which colour denotes which airport?).
Every aesthetics brings its own default scales (one discrete
and one continuous), so we didn’t need to specify it in the
last example.

Advanced data wrangling Advanced data visualization

Scales

It doesn’t make sens to have different scales for each layer, so
scales are added to the plot globally:
flights |> ggplot(aes(x = dep_delay, y = arr_delay,

colour = origin, size = air_time,
alpha = 0.3)) +

geom_point() +
scale_colour_manual(values=c("red", "blue", "green"))

0

100

200

300

400

0 100 200 300
dep_delay

ar
r_

de
la

y

air_time

200

400

600

origin

EWR

JFK

LGA

alpha

0.3

Advanced data wrangling Advanced data visualization

Position adjustments

There are five options to adjust positioning:

position = "identity" will place each object exactly
where it falls in the context of the graph. In the case of our
bar plot the bars would overlap.
position = "stack" will place objects ontop of each other
position = "fill" is similar to stacking, but makes each
set of stacked bars the same height (for comparing
proportions).
position = "dodge" places overlapping objects beside one
another.
position = "jitter" adds a small amount of noise to each
object to combat overplotting

Advanced data wrangling Advanced data visualization

Position adjustments

Here is an example for the first four position adjustments in the
case of a bar plot:

0

10

20

30

40

50

4 f r
drv

co
un

t

position = identity

0

25

50

75

100

4 f r
drv

co
un

t

position = stack

0.00

0.25

0.50

0.75

1.00

4 f r
drv

co
un

t

position = fill

0

10

20

30

40

50

4 f r
drv

co
un

t

position = dodge

	Advanced data wrangling
	Advanced data visualization

