Unit 04: Albus Dumbledore and the nycflights13 dataset Applied AI with R

Ferdinand Ferber and Wolfgang Trutschnig

Paris Lodron Universität Salzburg

4/20/24

Table of contents I

- Advanced data wrangling
- 2 Advanced data visualization

Advanced data visualization

Albus Dumbledore and the nycflights13 dataset

Al generated image for the prompt "Albus Dumbledore in his office in Hogwards, casting a powerful spell in front of his computer."

Albus Dumbledore and the nycflights13 dataset

- Lord Voldemort's Deat Eater found a new target for chaos and dispair in the Muggle world - messing with air traffic, causing delays and cancellation.
- To stop them, Dumbledore needs to be one step ahead of Voldemort's plans.
- Can he find the pattern in the nycflights13 dataset that reaveals the Death Eater's plan?

The nycflights13 dataset

- We will use the nycflights13 dataset, which consists of several dataframes.
- This dataset is provided by the nycflights13 package.
- Please install and load this package.

The nycflights13 dataset

Section 1

Advanced data wrangling

Advanced data wrangling

- So far, we learned about the {dplyr} verbs select(), filter(), mutate(), rename(), arrange() and the family of slice_*() verbs to transform dataframes.
- Now we will introduce *grouped dataframes* and how these verbs interact with them.
- We'll see that grouping dataframes hugely increase our data wrangling capabilities.

 The group_by verb modifies the group structure of the input dataframe, which changes the behaviour of most verbs.

¹Image taken from the *dplyr cheat sheet*, Posit Software, PBC

Inspecting the group structure

- The group_by() verbs takes a selection of columns and places all observations that are equal on those columns into the same group.
- For debugging purposes there is a function that returns the grouping variables as a character vector:

```
# Put all flights on the same date into the same group
flights |>
  group_by(year, month, day) |>
  group_vars()
```

[1] "year" "month" "day"

Ungroup

• The group structure can be (partially) removed by the ungroup() verb:

```
flights |>
 group_by(year, month, day) |>
 ungroup() |>
 group_vars()
```

character(0)

```
flights |>
 group_by(year, month, day) |>
 ungroup(month) |>
 group_vars()
```

[1] "year" "day"

Summarize²

• The summarize verb calculates aggregate/summary values for each column of the input dataframe.

²Image taken from the *dplyr cheat sheet*, Posit Software, PBC

Summarize

- The summarize() verb on an ungrouped dataframe is a bit boring.
- It returns a dataframe consisting of the specified columns and one row, where the entry is given by the provided summary expression.

Summarize

• But on grouped dataframes, the summary is calculated for each group independently.

year	month	day	mean_dep_delay	mean_arr_delay
2013	12	22	29.2398649	23.8995485
2013	3	15	12.4356334	0.5907216
2013	4	26	18.5924413	21.3721881
2013	11	11	3.3387755	-4.5240041
2013	9	5	-0.3877973	-15.5403727

Summarize

- The .groups argument controls how the output dataframe is grouped.
- The default is like drop_last, but with a warning.
- df <- flights |> group_by(year, month, day)
- df |> summarize(n = n(), .groups = "drop_last") |>
 group_vars()
- [1] "year" "month"
- df |> summarize(n = n(), .groups = "keep") |> group_vars()

[1] "year" "month" "day"
df |> summarize(n = n(), .groups = "drop") |> group_vars()

character(0)

Summary functions³

- Some useful standard
 summary functions: sum()
 mean()
 median()
 min()
 max()
 n()
 n distinct()
- Important: Notice, that you can also use any function that maps an atomic vector to a scalar value as a summary function.
- Nowadays the standard aggregation technique in R.

³Image taken from the *dplyr cheat sheet*, Posit Software, PBC

mutate

• mutate will be applied for each group independently:

```
flights |>
    mutate(rank_global = min_rank(arr_delay)) |>
    group_by(carrier) |>
    mutate(rank_group = min_rank(arr_delay))
```

carrier	flight	arr_delay	rank_global	rank_group
EV	4998	-18	70876	7892
B6	74	21	260489	41844
DL	2331	-4	165574	27224
VX	169	1	194343	3371
B6	653	7	221520	35095

filter

• filter() can be used in combination with a summary function.

```
flights |>
 group_by(carrier) |>
 filter(distance == max(distance))
```

flight	origin	dest	distance
435	JFK	SFO	2586
29	JFK	SFO	2586
2065	JFK	SFO	2586
15	EWR	SEA	2402
85	JFK	SFO	2586
	flight 435 29 2065 15 85	flight origin 435 JFK 29 JFK 2065 JFK 15 EWR 85 JFK	flightorigindest435JFKSFO29JFKSFO2065JFKSFO15EWRSEA85JFKSFO

• ...slice_max() would be more readable/convenient here:

Slicing

• The slice_*() verbs also work group-wise:

```
flights |>
 group_by(origin, dest) |>
 slice_max(dep_delay)
```

carrier	flight	origin	dest	dep_delay
B6	163	JFK	SRQ	194
UA	503	EWR	AUS	351
B6	1185	JFK	RDU	394
DL	2047	LGA	ATL	898
EV	4885	LGA	ILM	168

Exercise

- How does the average departure delay develop over months? Use group_by and summarize to calculate it and plot it using a suitable {ggplot2} geom.
- Which of the three NYC airports have a better on-time percentage for departing flights?
- Hint: First classify every flight as *on time* or *delayed*. Then group flights by origin airport and calculate the percentage using the summarize verb. Use sum() and n().
- Which plane (given by its tailnum) has the highest average speed?

mutate and summarize on multiple columns

- Sometimes it's useful to apply the same transformation across multiple columns.
- across has two primary arguments: The first arguments selects columns to operate on (with syntax like in select) and the second is a (list of) function(s) to apply to each selected column.

```
flights |>
    summarize(dep_delay = mean(dep_delay),
        arr_delay = mean(arr_delay))
flights |>
    summarize(across(c(dep_delay, arr_delay), mean))
```

where

• To select columns satisfying a given predicate function, use where:

flights |>
 summarize(across(where(is.character), n_distinct))

```
# A tibble: 1 x 4
carrier tailnum origin dest
<int> <int> <int> <int> <int> 1
```

filter on multiple columns

- There are two special companion functions for filter to do filtering based on multiple columns:
- if_any(.cols, .fns) keeps all rows where the predicate is true for *at least one* selected columns. Analogous for if_all(.cols, .fns).

Keeps all rows where at least one column is not NA
flights |>

filter(if_any(everything(), \(x) !is.na(x)))

- Use mutate() together with across() to transform every string column to a factorial column.
- Calculate the median for every numerical column.
- Use filter() and if_any() or if_all() to select all flights that had more than 60 minutes delay in any column containing the word "delay".

Combining dataframes

- Data comes often in a relational form, where it is split across a number of tables/dataframes which contain cross references.
- There are three families of verbs that work with two tables at a time:
- Joins add new variables to a dataframe from matching rows in another
- **Filtering joins** filter observations from a dataframe based on whether or not they match an observation in another
- Set operations treat observations as set elements

Inner Join⁴

- An *inner join* matches pairs of observations whenever their keys are equal.
- Syntax in R: inner_join(x, y, by)
- the by argument is option: per default, R uses ALL column names appearing in both dataframes (also for the other joining types).

⁴Image taken from *R* for *Data Science*, Wickham and Grolemund

Left Join⁵

- A *left join* keeps all observations in x and adds matches from y.
- If no match is found, all variables are filled with NA
- Syntax in R: left_join(x, y, by)

⁵Image taken from *R* for *Data Science*, Wickham and Grolemund

- A right join keeps all observations in y and adds matches from x.
- If no match is found, all variables are filled with NA

Syntax in R: right_join(x, y, by)

⁶Image taken from *R* for *Data Science*, Wickham and Grolemund

Full Join⁷

• A *full join* keeps all observations in x and y.

• Syntax in R: full_join(x, y, by)

⁷Image taken from *R* for Data Science, Wickham and Grolemund

Example: Joins

- In the following example we have a natural left join (the join variables are all common variables of both dataframes).
- Columns year: origin are the keys, column dest is from flights and column temp is from weather.

flights |> left_join(weather) |>
 select(year:day, hour, origin, dest, temp)

month	day	hour	origin	dest	temp
4	30	11	JFK	LAX	62.06
7	24	10	EWR	ATL	82.94
5	13	22	LGA	SYR	50.00
8	25	19	LGA	ORD	75.02
6	6	16	JFK	LAX	64.94
	month 4 7 5 8 6	month day 4 30 7 24 5 13 8 25 6 6	monthdayhour430117241051322825196616	month day hour origin 4 30 11 JFK 7 24 10 EWR 5 13 22 LGA 8 25 19 LGA 6 6 16 JFK	monthdayhourorigindest43011JFKLAX72410EWRATL51322LGASYR82519LGAORD6616JFKLAX

Join attributes

- We can control the join attributes via the by argument.
- If the variable names differ, we use join_by(leftcol == rightcol) to join on the columns leftcol and rightcol.
- If the variable name is the same in both dataframes, on can use the shortcut join_by(commoncol).

flights |> left_join(planes, by = join_by(tailnum)) |>
 select(origin, dest, tailnum, model)

origin	dest	tailnum	model
JFK	BUF	N656JB	A320-232
LGA	МСО	N984DL	MD-88
EWR	IND	N13949	EMB-145LR
JFK	DCA	N930XJ	CL-600-2D24
JFK	SAT	N924XJ	CL-600-2D24

Join suffix

- When a non-join-attribute variable is in both dataframes, a suffix will be appended to resolve disambiguities.
- The default suffix is .x for the left table and .y for the right one. This can be modified:

```
flights |>
    left_join(planes, by = join_by(tailnum),
            suffix = c(".flight", ".plane")) |>
    select(year.flight, origin, dest,
            tailnum, year.plane)
```

year.flight	origin	dest	tailnum	year.plane
2013	EWR	TUL	N41104	2002
2013	JFK	BOS	N3CMAA	NA
2013	JFK	JAX	N229JB	2006
2013	EWR	FLL	N16234	1999

Exercise

• Recreate the following dataframe:

year	month	day	holiday
2013	1	1	New Years Day
2013	7	4	Independence Day
2013	11	29	Thanksgiving Day
2013	12	25	Christmas Day

- Join the flights dataframe with this special_days dataframe. Which type of join is appropriate?
- Compare the number and delays of flights on normal days and on these special days.
- Produce an informative plot on the comparison.

Semi Join⁸

 A semi join returns all rows of x that have a match in y, i.e. every observation of x that would be included in an inner join.

• Syntax in R: semi_join(x, y, by)

⁸Image taken from *R* for Data Science, Wickham and Grolemund

Anti Join⁹

- An anti join returns all rows of x that have no match in y, i.e. every observation of x that would be excluded in an inner join.
- It can be seen as a filter via different dataframes.

• Syntax in R: anti_join(x, y, by)

⁹Image taken from R for Data Science, Wickham and Grolemund

• Use an appropriate filtering join to filter to all airports (in the airport dataframe) that appear as a destination in the flights dataframe

• Consider the following code (install the maps package first):

your_filtered_airports |>
ggplot(aes(x = lon, y = lat)) + borders("state") +
geom_point() + coord_quickmap()

• Colour each airport by the average destination delay.

- Use an appropriate filtering join to figure out which flights don't have a tailnum that corresponds to an entry in the planes dataframe
- What carriers are dominating this list?
- What kind of flights are those in

Set operations

One can treat dataframes as sets (of rows) and do the usual set operations on them. All operations ingnore duplicates.

- intersect(df1, df2) returns the common rows
- union(df1, df2) returns all rows of both dataframes
- setdiff(df1, df2) returns all rows in df1 that are not in df2
- symdiff(df1, df2) returns the symmetric difference, i.e. all rows that are in df1 but not in df2 plus all rows that are in df2 but not in df1

Binding columns¹⁰

• Returns df1 and df2 placed side by side as a single table.

Syntax in R: bind_cols(df1, df2)

¹⁰Image taken from the *dplyr cheat sheet*, Posit Software, PBC

Binding rows¹¹

• Returns df1 and df2 placed on top of the other as a single table.

Syntax in R: bind_rows(df1, df2)

 $^{^{11}\}mathrm{Image}$ taken from the *dplyr cheat sheet*, Posit Software, PBC

Nesting

- R allows dataframes to contain columns of dataframes.
- This is called a *nested* dataframe and it's useful for functions that work on whole dataframes (e.g. modeling functions).

flights |> group_by(origin) |> nest()

Unnesting

• The inverse operation of nest() is unnest(col) and will expand all dataframes in col.

Example: Nesting

• Nesting can be very useful when we want to work with groups as a whole.

```
# Randomly select two groups
flights |>
  group_by(tailnum) |>
  nest() |>
  ungroup() |>
  slice_sample(n = 2) |>
  unnest(data)
```

tailnum	year	month	day	dep_time
N615QX	2013	6	18	1053
N615QX	2013	3	6	1506
N543UW	2013	5	1	1257

Section 2

Advanced data visualization

Advanced data visualization

- So far we acquired a fair amount of {ggplot2} knowledge that lets us create a wide range of useful and beutiful plots.
- Now it's time to dig deeper into the *grammar of graphics* and the underlaying principles of {ggplot2}.

The components of a ggplot

Every ggplot consists of

- A default dataframe
- One or more layers
- For each mapped aeasthetics one scale
- A coordinate system
- A faceting specification

Every aesthetics comes with a default scale. The default coordiate system is coord_cartesian() and the default faceting specification is facet_null().

The components of a layer

Each layer consists of - An input dataframe - A selected geom - An aesthetical mapping - A statistical transformation - A position adjustment

You already know the input dataframe, the geom and the aesthetical mapping. If no input dataframe is supplied for the layer, then the default dataframe for the whole plot will be used automatically.

Types of geoms

There are two types of geoms:

- **Individual geoms** (e.g. points) correspond to exactly one observation in the input dataframe.
- **Collective geoms** (e.g. boxplots) correspond to a group of observations in the input dataframe.
- Every geom has a set of aesthetics (visual properties). A point for example has an x position, a y position, a colour, a shape and so on. A boxplot has a width, a median value, a lower and upper hinge (the 25% and 75% quantiles) and so on.
- The aesthetic mapping defines which column in the input dataframe corresponds to which aesthetics. In the boxplot case there are obviously no columns for median and quantiles in the input dataframe, so how does that work?

Sublayer modularity¹²

• The input dataframe undergoes several transformations before it is ready for drawing:

¹²This image was taken from the manual of {ggtrace}

Sublayer modularity

- In the first step, {ggplot2} takes the input dataframe and computes, based on the start aesthetical mapping, a new dataframe (usually this is just a select operation, but you can do everying you can do in a mutate() call also in an aes() call).
- Then the statistical transformation is applied (e.g. calculating the quantile information for boxplot)

Sublayer modularity

- Then the geom can transform this dataframe further (usually it doesn't) and the scales are applied, mapping from the data space to the aesthetical space
- Finall, the after scales aesthetical mapping is applied and the result (called layer data) is shipped back to the drawing engine.

Sublayer modularity

- Usually, the user doesn't need to think about the fact that there are three different aesthetical mappings.
- The following calls are identical due to {ggplot2}s defaults:

```
flights |> ggplot() +
  geom_bar(aes(x = origin, y = after_stat(count)))
```

```
flights |> ggplot() +
  geom_bar(aes(x = origin))
```

Statistical transformations

Notice that every layer has a statistical transformation. For geom_point() we can see that it is the *identity transformation*:

geom_point

```
function (mapping = NULL, data = NULL, stat = "identity", position = "identity"
    ..., na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)
{
    layer(data = data, mapping = mapping, stat = stat, geom = GeomPoint,
        position = position, show.legend = show.legend, inherit.aes = inherit.a
        params = list2(na.rm = na.rm, ...))
}
<bytecode: 0x000001fb99ad0898>
<environment: namespace:ggplot2>
```

Statistical transformations

• As you saw on the previous slide, you can override the stat argument of a layer. Here we use the count stat on a point geom:

Scales

Consider the following plot:

Scales

- In the last example we mapped the column origin to the aesthetics colour, but we never specified which origin airport (JFK, EWR, LGA) got which colour (red, green, ...). This was done by the *scale* of that aesthetics.
- A scale consists of a function that maps numeric values (*continuous scale*) or factorial values (*discrete scale*) to the possible values of the aesthetics, and its inverse. The inverse function is called *guide* and is used to generate the legends (which colour denotes which airport?).
- Every aesthetics brings its own default scales (one discrete and one continuous), so we didn't need to specify it in the last example.

Scales

It doesn't make sens to have different scales for each layer, so scales are added to the plot globally:

geom_point() +
scale_colour_manual(values=c("red", "blue", "green"))

Position adjustments

There are five options to adjust positioning:

- position = "identity" will place each object exactly where it falls in the context of the graph. In the case of our bar plot the bars would overlap.
- position = "stack" will place objects ontop of each other
- position = "fill" is similar to stacking, but makes each set of stacked bars the same height (for comparing proportions).
- position = "dodge" places overlapping objects beside one another.
- position = "jitter" adds a small amount of noise to each object to combat overplotting

Position adjustments

Here is an example for the first four position adjustments in the case of a bar plot:

