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Percy Weasley and linear regression

AI generated image for the prompt “Percy Weasley with a large
ruler in his hand in a hallway in Howgards.”
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Percy Weasley and linear regression

What is linear regression?
We want to predict one variable (the outcome) from all other
variables (the predictors)…
…and assume a linear/affine relationship between them

Why linear regression?
Interpretable
Statistically understood
Performs surprisingly well in many situations
Very fast (time complexity of 𝒪(𝑛𝑝2 + 𝑝3) for 𝑛 datapoints
and 𝑝 predictors)
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Percy Weasley and linear regression

Linear model

𝑌 = 𝑐1𝑋1 + 𝑐2𝑋2 + ⋯ + 𝑐𝑝𝑋𝑝 + 𝜖

…thereby 𝑌 is the outcome, 𝑋1, … , 𝑋𝑝 are the predictors,
𝑐1, … , 𝑐𝑝 are the model parameters (to be learned) and 𝜖 is
some random (unobservable) noise.

We will view 𝑋1, … , 𝑋𝑛 and 𝜖 as random variables.

To study linear regression, we first need some basics on
correlation.
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Section 1

Variance, Covariance and Correlation
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Variance

Variance quantifies the
dispersion/spread of a
random variable
It is defined as the expected
squared deviation from the
mean
In layman’s terms: “On
average, how far is a point
away from the mean?”

Variance
The variance of a random
variable 𝑋 is defined as

𝕍[𝑋] ∶= 𝔼 [(𝑋 − 𝔼[𝑋])2]
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Empirical Variance

In practice we don’t know the variance of a random variable
But we can estimate it

Empirical variance
Let 𝑋 be a random variable and 𝑥1, … , 𝑥𝑛 be a random sample of
𝑋. Then

�̂�[𝑋] ∶= 𝑥𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

and
�̂�[𝑋] ∶= 𝑠2

𝑛 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − �̂�[𝑋])2

are unbiased estimators for the expectation and the variance of 𝑋
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Empirical Variance

The following equality is easy to derive:

�̂�[𝑋] = 𝑠2
𝑛 = 1

𝑛 − 1
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥𝑛)2

= 1
𝑛 − 1 (

𝑛
∑
𝑖=1

𝑥2
𝑖 − 𝑥2

𝑛)

Advantage: The sums ∑𝑛
𝑖=1 𝑥𝑖 and ∑𝑛

𝑖=1 𝑥2
𝑖 can both be

computed in the same traversal of the data and from them
both mean and variance are computable
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Exercise

Assume you have a random variable 𝑋 and collected 8
samples: 1, 2, 3, 4, 5, 6, 7, 8. Estimate the mean and the
variance of 𝑋.
Assume you have a random variable 𝑌 and collected 8
samples: 1, 3, 2, 3, 4, 3, 5, 6. Estimate the mean and the
variance of 𝑌 .
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Covariance matrix

If we have two random
real-valued variables 𝑋 and
𝑌 , we might are naturally
interested in the pair
(𝑋, 𝑌 ).
This is now a 2d random
variable.
We can still ask for the
amount of variance or the
spread of it.
But now we have two
magnitudes and a direction
of the variance.
The covariance matrix
captures all the information
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Covariance matrix

Covariance matrix
Let 𝑋 and 𝑌 be two random variables. Set 𝑍 ∶= (𝑋, 𝑌 ). Then
the covariance matrix is defined as

𝑆𝑋,𝑌 ∶= 𝔼 [(𝑍 − 𝔼[𝑍]) (𝑍 − 𝔼[𝑍])⊤]

It turns out that the diagonal entries of 𝑆𝑋,𝑌 are the
variances of 𝑋 resp. 𝑌 .
The off-diagonal entries are called covariances:

Σ𝑋,𝑌 =∶ ( 𝕍[𝑋] Cov(𝑋, 𝑌 )
Cov(𝑌 , 𝑋) 𝕍[𝑌 ] )
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Estimating the covariances

The covariances can be estimated by

Σ̂𝑋,𝑌 = Ĉov(𝑋, 𝑌 ) ∶ = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − �̂�[𝑋])(𝑦𝑖 − �̂�[𝑌 ])

= 1
𝑛 − 1 (

𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖 − 𝑛�̂�[𝑋]�̂�[𝑌 ])
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Exercise

Assume you have a pair (𝑋, 𝑌 ), where you collected 8
samples (1, 1), (2, 3), (3, 2), (4, 4), (5, 3), (6, 3), (7, 5), (8, 6)
Compute the (estimated) covariance matrix of (𝑋, 𝑌 ).
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Pearson correlation

The covariance can be interpreted as a measure of linear
dependence of the two random variables
But its value depend on the variances of the two underlying
random variables
Normalizing the covariance yields the Pearson correlation
coefficient:

Pearson correlation
Given two real-valued random variables 𝑋 and 𝑌 , the Pearson
correlation between them is defined as

𝜌𝑋,𝑌 ∶= Cov(𝑋, 𝑌 )
√𝕍[𝑋] ⋅ √𝕍[𝑌 ]

∈ [−1, 1]
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Exercise

Calculate the Pearson correlation ̂𝜌𝑛 ∈ [−1, 1] for the sample
of the pair (𝑋, 𝑌 ) from the last exercise.

Consider the sample version ̂𝜌𝑛 ∈ [−1, 1] for a general sample
(i.e., use the sample versions for the covariance and the
variances). Can you prove that we always have ̂𝜌𝑛 ∈ [−1, 1]?
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Interpretation of the Pearson correlation

The Pearson correlation 𝜌𝑋,𝑌 measures the (extent of) linear
dependence between 𝑋 and 𝑌

If 𝜌𝑋,𝑌 = +1, then the data points lie perfectly on a straight
line with positive slope
If 𝜌𝑋,𝑌 = 0, then there is no linear dependence between 𝑋
and 𝑌
If 𝜌𝑋,𝑌 = −1, then the data points lie perfectly on a straight
line with negative slope
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Interpretation of the Pearson correlation

Notice that the Pearson correlation does not provide detailed
information on the slope (other than “upwards” or
“downwards”):
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Limitations of Pearson correlation

Also notice that the Pearson correlation only measures linear
dependence and that it has no direction (i.e., it is symmetric):
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Exercise

Use the ggpairs() function of the {GGally} package to
visualize the pairwise correlations of a dataset:
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Section 2

Univariate Linear Regression
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Linear Regression

In regression we have a couple of random variables
𝑋1, … , 𝑋𝑛, 𝑌 , 𝜖 and assume the following relationship to
hold:

𝑌 = 𝑓(𝑋1, … , 𝑋𝑛) + 𝜖
The function 𝑓 (called regression function) is unknown (to be
estimated) and we generally assume the error 𝜖 to satisfy
𝔼[𝜖] = 0
In linear regression we additionally assume that 𝑓 has the
form 𝑓(𝑋1, … , 𝑋𝑛) ∶= 𝑎0 + 𝑎1𝑋1 + ⋯ + 𝑎𝑛𝑋𝑛, where the
𝑎1, … , 𝑎𝑛 are unknown parameters
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Univariate linear regression

We start with the simples case, univariate linear setting, i.e.

𝑓(𝑋) = 𝑎 + 𝑏𝑋

for a real-valued random variable 𝑋
General idea:

Collect samples (𝑥1, 𝑦1) … , (𝑥𝑛, 𝑦𝑛) from (𝑋, 𝑌 )
For given parameters ̂𝑎 and ̂𝑏 we estimate the error as
𝐿( ̂𝑎, ̂𝑏) ∶= ∑𝑛

𝑖=1( ̂𝑎 + ̂𝑏𝑥𝑖 − 𝑦𝑖)2

Among all possible ̂𝑎 and ̂𝑏, choose those ones that minimize
𝐿( ̂𝑎, ̂𝑏)

Open questions
How can we solve the optimization problem efficiently?
How good are our estimates for 𝑎 and 𝑏?
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Reminder: Function optimization

Let 𝐴 ⊆ ℝ𝑚 and 𝑓 ∶ 𝐴 → ℝ be a function. Candidates for
(local) extrema are:

Points 𝑥 ∈ ℝ𝑚 where ∇𝑓(𝑥) = 0
Points 𝑥 ∈ ℝ𝑚 where ∇𝑓 ′(𝑥) is undefined (in particular
𝑥 ∈ 𝜕𝐴)

Remember that ∇𝑓(𝑥) ∶= ( 𝜕𝑓
𝜕𝑥1

(𝑥), … , 𝜕𝑓
𝜕𝑥𝑛

(𝑥)) is the
gradient of 𝑓 .
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Univariate linear regression

The loss function for the univariate linear regression was

𝐹( ̂𝑎, �̂�) =
𝑛

∑
𝑖=1

( ̂𝑎 + �̂�𝑥𝑖 − 𝑦𝑖)2

and the partial derivates can be easily seen as

𝜕𝐹
𝜕 ̂𝑎 ( ̂𝑎, �̂�) =

𝑛
∑
𝑖=1

2( ̂𝑎 + ̂𝑏𝑥𝑖 − 𝑦𝑖)

𝜕𝐹
𝜕�̂�

( ̂𝑎, �̂�) =
𝑛

∑
𝑖=1

2( ̂𝑎 + �̂�𝑥𝑖 − 𝑦𝑖)𝑥𝑖
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Univariate linear regression

Setting these two equations to zero yields the following
system of linear equations:

Univariate linear regression
Let (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) be some data points. Then the best line
of fit through the data points is given by ̂𝑎 + �̂�𝑥, where ̂𝑎 and �̂�
have to fullfill

⎛⎜⎜⎜
⎝

𝑛 ∑𝑛
𝑖=1 𝑥𝑖

∑𝑛
𝑖=1 𝑥𝑖 ∑𝑛

𝑖=1 𝑥2
𝑖

⎞⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝐶

( ̂𝑎
�̂�) = (0

0)
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Univariate linear regression

It is not hard to calculate the following quantities (use
Cramer’s rule):

det(𝐶) = 𝑛(𝑛 − 1)�̂�[𝑋]

�̂� = Ĉov(𝑋, 𝑌 )
�̂�[𝑋]

= ̂𝜌𝑋,𝑌
√�̂�[𝑌 ]
√�̂�[𝑋]

̂𝑎 = ̂𝔼[𝑌 ] − �̂� ⋅ �̂�[𝑋]

So the regression line can be fully determined by statistical
measures of 𝑋 and 𝑌 .
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Exercise

Again consider the samples of (𝑋, 𝑌 ) from the previous
exercise.
You already computed the empirical covariance matrix and the
empirical Pearson correlation for (𝑋, 𝑌 )
Compute the linear regression coefficients for the model
𝑌 = 𝑎0 + 𝑎1𝑋.
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Coefficient of Determination (R-squared)

Assume we have samples (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) of (𝑋, 𝑌 )
Compute ̂𝑎, �̂� as the parameters of the linear regression line
Then we can use the model to predict the data points:

̂𝑦𝑖 ∶= ̂𝑎 + �̂�𝑥𝑖 for every 𝑖
The coefficient of determination, also called R-squared, of the
model is defined as

𝑅2 ∶= 1 − ∑𝑛
𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

∑𝑛
𝑖=1(𝑦𝑖 − �̂�[𝑌 ])2

Interpretation: 𝑅2 is the proportion of 𝑦-variance explained by
the linear model
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Exercise

Again consider the samples of (𝑋, 𝑌 ) from the previous
exercises.
You already computed the linear regression coefficients for the
model 𝑌 = 𝑎0 + 𝑎1𝑋.
Now compute the R-squared metric for this model
If not done yet, construct a dataframe containing the sample
(columns x and y) and use the lm command in R to calculate
everything without effort.
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Coefficient of Determination (R-squared)

We always have 0 ≤ 𝑅2 ≤ 1 (for general models we may also
obtain negative values)

If 𝑅2 ≈ 1, then the linear model explains the data very well

If 𝑅2 ≈ 0, then the linear model does not help much to
explain the data
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Section 3

Multivariate Linear Regression
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Multivariate linear regression

So far: 𝑌 = 𝑎 + 𝑏𝑋 + 𝜖 (univariate)
Now: 𝑌 = 𝑎0 + 𝑎1𝑋1 + ⋯ + 𝑎𝑚𝑋𝑚 + 𝜖 (multivariate)
We can formulate the loss function as

𝐹( ̂𝑎) ∶= (𝑋 ̂𝑎 − 𝑦)⊤(𝑋 ̂𝑎 − 𝑦)

where

𝑋 ∶=
⎛⎜⎜⎜
⎝

1 𝑥11 … 𝑥1𝑚
1 𝑥21 … 𝑥2𝑚
⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 … 𝑥𝑛𝑚

⎞⎟⎟⎟
⎠

̂𝑎 ∶=
⎛⎜⎜⎜
⎝

̂𝑎0
̂𝑎1
⋮
̂𝑎𝑚

⎞⎟⎟⎟
⎠

𝑦 ∶=
⎛⎜⎜⎜
⎝

𝑦1
𝑦2
⋮

𝑦𝑛

⎞⎟⎟⎟
⎠

𝑋 collects the observed predictors, 𝑦 collects the observed
outcomes and ̂𝑎 collects the estimated model coefficients
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Multivariate linear regression

One can show (tedious/ugly, but not hard) that

∇𝐹( ̂𝑎) = 2𝑋⊤𝑋 ̂𝑎 − 2𝑋⊤𝑦

Setting this to zero and rearranging yields

̂𝑎 = (𝑋⊤𝑋)−1 𝑋⊤𝑦

This is the solution to our problem of estimating the model
coefficients ̂𝑎, given the data 𝑋 and 𝑦.
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Reminder: Linear regression in R

In the {tidymodels} framework we can use (multivariate)
linear regression as follows:

data_split <- initial_split(mtcars, prop = 3/4)
model <- linear_reg()
fitted_model <- model |> fit(

mpg ~ hp + wt, data = data_split |> training()) |>
extract_fit_engine()
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Reminder: Linear regression in R

summary(fitted_model)

Call:
stats::lm(formula = mpg ~ hp + wt, data = data)

Residuals:
Min 1Q Median 3Q Max

-3.3192 -1.1228 0.0191 0.5908 4.6776

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 35.631428 1.413716 25.204 < 2e-16 ***
hp -0.035951 0.008776 -4.096 0.000516 ***
wt -3.244213 0.536678 -6.045 5.34e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.945 on 21 degrees of freedom
Multiple R-squared: 0.8815, Adjusted R-squared: 0.8702
F-statistic: 78.12 on 2 and 21 DF, p-value: 1.876e-10
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