Unit 05:

Percy Weasley and linear regression

Applied AI with R

Ferdinand Ferber and Wolfgang Trutschnig

Paris Lodron Universität Salzburg

$$
4 / 20 / 24
$$

Table of contents I

(1) Variance, Covariance and Correlation
(2) Univariate Linear Regression
(3) Multivariate Linear Regression

Percy Weasley and linear regression

Al generated image for the prompt "Percy Weasley with a large ruler in his hand in a hallway in Howgards."

Percy Weasley and linear regression

- What is linear regression?
- We want to predict one variable (the outcome) from all other variables (the predictors)...
- ...and assume a linear/affine relationship between them
- Why linear regression?
- Interpretable
- Statistically understood
- Performs surprisingly well in many situations
- Very fast (time complexity of $\mathcal{O}\left(n p^{2}+p^{3}\right)$ for n datapoints and p predictors)

Percy Weasley and linear regression

Linear model

$$
Y=c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{p} X_{p}+\epsilon
$$

- ...thereby Y is the outcome, X_{1}, \ldots, X_{p} are the predictors, c_{1}, \ldots, c_{p} are the model parameters (to be learned) and ϵ is some random (unobservable) noise.
- We will view X_{1}, \ldots, X_{n} and ϵ as random variables.
- To study linear regression, we first need some basics on correlation.

Section 1

Variance, Covariance and Correlation

Variance

- Variance quantifies the dispersion/spread of a random variable
- It is defined as the expected squared deviation from the mean
- In layman's terms: "On average, how far is a point away from the mean?"

Variance

The variance of a random variable X is defined as

$$
\mathbb{V}[X]:=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

Empirical Variance

- In practice we don't know the variance of a random variable
- But we can estimate it

Empirical variance

Let X be a random variable and x_{1}, \ldots, x_{n} be a random sample of X. Then

$$
\hat{\mathbb{E}}[X]:=\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

and

$$
\hat{\mathbb{V}}[X]:=s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mathbb{E}}[X]\right)^{2}
$$

are unbiased estimators for the expectation and the variance of X

Empirical Variance

- The following equality is easy to derive:

$$
\begin{aligned}
\hat{\mathbb{V}}[X] & =s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2} \\
& =\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-\bar{x}_{n}^{2}\right)
\end{aligned}
$$

- Advantage: The sums $\sum_{i=1}^{n} x_{i}$ and $\sum_{i=1}^{n} x_{i}^{2}$ can both be computed in the same traversal of the data and from them both mean and variance are computable

Exercise

- Assume you have a random variable X and collected 8 samples: $1,2,3,4,5,6,7,8$. Estimate the mean and the variance of X.
- Assume you have a random variable Y and collected 8 samples: $1,3,2,3,4,3,5,6$. Estimate the mean and the variance of Y.

Covariance matrix

- If we have two random real-valued variables X and Y, we might are naturally interested in the pair (X, Y).
- This is now a 2 d random variable.
- We can still ask for the amount of variance or the spread of it.
- But now we have two magnitudes and a direction of the variance.
- The covariance matrix captures all the information

Covariance matrix

Covariance matrix

Let X and Y be two random variables. Set $Z:=(X, Y)$. Then the covariance matrix is defined as

$$
S_{X, Y}:=\mathbb{E}\left[(Z-\mathbb{E}[Z])(Z-\mathbb{E}[Z])^{\top}\right]
$$

- It turns out that the diagonal entries of $S_{X, Y}$ are the variances of X resp. Y.
- The off-diagonal entries are called covariances:

$$
\Sigma_{X, Y}=:\left(\begin{array}{cc}
\mathbb{V}[X] & \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(Y, X) & \mathbb{V}[Y]
\end{array}\right)
$$

Estimating the covariances

The covariances can be estimated by

$$
\begin{aligned}
\hat{\Sigma}_{X, Y}=\widehat{\operatorname{Cov}}(X, Y): & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mathbb{E}}[X]\right)\left(y_{i}-\hat{\mathbb{E}}[Y]\right) \\
& =\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i} y_{i}-n \hat{\mathbb{E}}[X] \hat{\mathbb{E}}[Y]\right)
\end{aligned}
$$

Exercise

- Assume you have a pair (X, Y), where you collected 8 samples $(1,1),(2,3),(3,2),(4,4),(5,3),(6,3),(7,5),(8,6)$
- Compute the (estimated) covariance matrix of (X, Y).

Pearson correlation

- The covariance can be interpreted as a measure of linear dependence of the two random variables
- But its value depend on the variances of the two underlying random variables
- Normalizing the covariance yields the Pearson correlation coefficient:

Pearson correlation

Given two real-valued random variables X and Y, the Pearson correlation between them is defined as

$$
\rho_{X, Y}:=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\mathbb{V}[X]} \cdot \sqrt{\mathbb{V}[Y]}} \in[-1,1]
$$

Exercise

- Calculate the Pearson correlation $\hat{\rho}_{n} \in[-1,1]$ for the sample of the pair (X, Y) from the last exercise.
- Consider the sample version $\hat{\rho}_{n} \in[-1,1]$ for a general sample (i.e., use the sample versions for the covariance and the variances). Can you prove that we always have $\hat{\rho}_{n} \in[-1,1]$?

Interpretation of the Pearson correlation

- The Pearson correlation $\rho_{X, Y}$ measures the (extent of) linear dependence between X and Y
- If $\rho_{X, Y}=+1$, then the data points lie perfectly on a straight line with positive slope
- If $\rho_{X, Y}=0$, then there is no linear dependence between X and Y
- If $\rho_{X, Y}=-1$, then the data points lie perfectly on a straight line with negative slope

Interpretation of the Pearson correlation

- Notice that the Pearson correlation does not provide detailed information on the slope (other than "upwards" or "downwards"):

Limitations of Pearson correlation

- Also notice that the Pearson correlation only measures linear dependence and that it has no direction (i.e., it is symmetric):

Exercise

- Use the ggpairs () function of the \{GGally\} package to visualize the pairwise correlations of a dataset:

Section 2

Univariate Linear Regression

Linear Regression

- In regression we have a couple of random variables $X_{1}, \ldots, X_{n}, Y, \epsilon$ and assume the following relationship to hold:

$$
Y=f\left(X_{1}, \ldots, X_{n}\right)+\epsilon
$$

- The function f (called regression function) is unknown (to be estimated) and we generally assume the error ϵ to satisfy $\mathbb{E}[\epsilon]=0$
- In linear regression we additionally assume that f has the form $f\left(X_{1}, \ldots, X_{n}\right):=a_{0}+a_{1} X_{1}+\cdots+a_{n} X_{n}$, where the a_{1}, \ldots, a_{n} are unknown parameters

Univariate linear regression

- We start with the simples case, univariate linear setting, i.e.

$$
f(X)=a+b X
$$

for a real-valued random variable X

- General idea:
- Collect samples $\left(x_{1}, y_{1}\right) \ldots,\left(x_{n}, y_{n}\right)$ from (X, Y)
- For given parameters \hat{a} and \hat{b} we estimate the error as

$$
L(\hat{a}, \hat{b}):=\sum_{i=1}^{n}\left(\hat{a}+\hat{b} x_{i}-y_{i}\right)^{2}
$$

- Among all possible \hat{a} and \hat{b}, choose those ones that minimize $L(\hat{a}, \widehat{b})$
- Open questions
- How can we solve the optimization problem efficiently?
- How good are our estimates for a and b ?

Reminder: Function optimization

- Let $A \subseteq \mathbb{R}^{m}$ and $f: A \rightarrow \mathbb{R}$ be a function. Candidates for (local) extrema are:
- Points $x \in \mathbb{R}^{m}$ where $\nabla f(x)=0$
- Points $x \in \mathbb{R}^{m}$ where $\nabla f^{\prime}(x)$ is undefined (in particular $x \in \partial A$)
- Remember that $\nabla f(x):=\left(\frac{\partial f}{\partial x_{1}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right)$ is the gradient of f.

Univariate linear regression

- The loss function for the univariate linear regression was

$$
F(\hat{a}, \hat{b})=\sum_{i=1}^{n}\left(\hat{a}+\hat{b} x_{i}-y_{i}\right)^{2}
$$

- and the partial derivates can be easily seen as

$$
\begin{aligned}
& \frac{\partial F}{\partial \hat{a}}(\hat{a}, \hat{b})=\sum_{i=1}^{n} 2\left(\hat{a}+\hat{b} x_{i}-y_{i}\right) \\
& \frac{\partial F}{\partial \hat{b}}(\hat{a}, \hat{b})=\sum_{i=1}^{n} 2\left(\hat{a}+\hat{b} x_{i}-y_{i}\right) x_{i}
\end{aligned}
$$

Univariate linear regression

- Setting these two equations to zero yields the following system of linear equations:

Univariate linear regression

Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ be some data points. Then the best line of fit through the data points is given by $\hat{a}+\hat{b} x$, where \hat{a} and \hat{b} have to fullfill

$$
\underbrace{\left(\begin{array}{cc}
n & \\
\sum_{i=1}^{n} x_{i} \\
\sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2}
\end{array}\right)}_{=: C}\binom{\hat{a}}{\hat{b}}=\binom{0}{0}
$$

Univariate linear regression

- It is not hard to calculate the following quantities (use Cramer's rule):

$$
\begin{aligned}
\operatorname{det}(C) & =n(n-1) \hat{\mathbb{V}}[X] \\
\hat{b} & =\frac{\widehat{\operatorname{Cov}}(X, Y)}{\hat{\mathbb{V}}[X]}=\hat{\rho}_{X, Y} \frac{\sqrt{\hat{\mathbb{V}}[Y]}}{\sqrt{\hat{\mathbb{V}}[X]}} \\
\hat{a} & =\mathbb{E}[Y]-\hat{b} \cdot \hat{\mathbb{E}}[X]
\end{aligned}
$$

- So the regression line can be fully determined by statistical measures of X and Y.

Exercise

- Again consider the samples of (X, Y) from the previous exercise.
- You already computed the empirical covariance matrix and the empirical Pearson correlation for (X, Y)
- Compute the linear regression coefficients for the model $Y=a_{0}+a_{1} X$.

Coefficient of Determination (R-squared)

- Assume we have samples $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ of (X, Y)
- Compute \hat{a}, \hat{b} as the parameters of the linear regression line
- Then we can use the model to predict the data points: $\widehat{y}_{i}:=\hat{a}+\hat{b} x_{i}$ for every i
- The coefficient of determination, also called R-squared, of the model is defined as

$$
R^{2}:=1-\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\hat{\mathbb{E}}[Y]\right)^{2}}
$$

- Interpretation: R^{2} is the proportion of y-variance explained by the linear model

Exercise

- Again consider the samples of (X, Y) from the previous exercises.
- You already computed the linear regression coefficients for the model $Y=a_{0}+a_{1} X$.
- Now compute the R-squared metric for this model
- If not done yet, construct a dataframe containing the sample (columns x and y) and use the Im command in R to calculate everything without effort.

Coefficient of Determination (R-squared)

- We always have $0 \leq R^{2} \leq 1$ (for general models we may also obtain negative values)
- If $R^{2} \approx 1$, then the linear model explains the data very well
- If $R^{2} \approx 0$, then the linear model does not help much to explain the data

Section 3

Multivariate Linear Regression

Multivariate linear regression

- So far: $Y=a+b X+\epsilon$ (univariate)
- Now: $Y=a_{0}+a_{1} X_{1}+\cdots+a_{m} X_{m}+\epsilon$ (multivariate)
- We can formulate the loss function as

$$
F(\hat{a}):=(X \hat{a}-y)^{\top}(X \hat{a}-y)
$$

where

$$
X:=\left(\begin{array}{cccc}
1 & x_{11} & \ldots & x_{1 m} \\
1 & x_{21} & \ldots & x_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & \ldots & x_{n m}
\end{array}\right) \quad \hat{a}:=\left(\begin{array}{c}
\hat{a}_{0} \\
\hat{a}_{1} \\
\vdots \\
\hat{a}_{m}
\end{array}\right) \quad y:=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

- X collects the observed predictors, y collects the observed outcomes and \hat{a} collects the estimated model coefficients

Multivariate linear regression

- One can show (tedious/ugly, but not hard) that

$$
\nabla F(\hat{a})=2 X^{\top} X \hat{a}-2 X^{\top} y
$$

- Setting this to zero and rearranging yields

$$
\hat{a}=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

- This is the solution to our problem of estimating the model coefficients \hat{a}, given the data X and y.

Reminder: Linear regression in R

- In the \{tidymodels\} framework we can use (multivariate) linear regression as follows:

```
data_split <- initial_split(mtcars, prop = 3/4)
model <- linear_reg()
fitted_model <- model |> fit(
    mpg ~ hp + wt, data = data_split |> training()) |>
    extract_fit_engine()
```


Reminder: Linear regression in R

```
summary(fitted_model)
Call:
stats::lm(formula = mpg ~ hp + wt, data = data)
Residuals:
    Min 1Q Median 3Q Max
-3.3192-1.1228 0.0191 0.5908 4.6776
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.631428 1.413716 25.204 < 2e-16 ***
hp -0.035951 0.008776 -4.096 0.000516 ***
wt -3.244213 0.536678 -6.045 5.34e-06 ***
--
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.945 on 21 degrees of freedom
Multiple R-squared: 0.8815, Adjusted R-squared: 0.8702
F-statistic: 78.12 on 2 and 21 DF, p-value: 1.876e-10
```

