Multivariate Linear Regression

Unit 05: Percy Weasley and linear regression Applied AI with R

Ferdinand Ferber and Wolfgang Trutschnig

Paris Lodron Universität Salzburg

4/20/24

Multivariate Linear Regression

Table of contents I

- 1 Variance, Covariance and Correlation
- 2 Univariate Linear Regression
- 3 Multivariate Linear Regression

Variance, Covariance and Correlation

Univariate Linear Regression

Multivariate Linear Regression

Percy Weasley and linear regression

Al generated image for the prompt "Percy Weasley with a large ruler in his hand in a hallway in Howgards."

Percy Weasley and linear regression

- What is linear regression?
 - We want to predict one variable (the *outcome*) from all other variables (the *predictors*)...
 - ...and assume a linear/affine relationship between them
- Why linear regression?
 - Interpretable
 - Statistically understood
 - Performs surprisingly well in many situations
 - Very fast (time complexity of $\mathcal{O}(np^2+p^3)$ for n datapoints and p predictors)

Multivariate Linear Regression

Percy Weasley and linear regression

Linear model

$$Y=c_1X_1+c_2X_2+\dots+c_pX_p+\epsilon$$

- ...thereby Y is the outcome, X_1, \ldots, X_p are the predictors, c_1, \ldots, c_p are the model parameters (to be learned) and ϵ is some random (unobservable) noise.
- We will view X_1, \ldots, X_n and ϵ as random variables.
- To study linear regression, we first need some basics on correlation.

Section 1

Variance, Covariance and Correlation

Variance, Covariance and Correlation

Univariate Linear Regression

Multivariate Linear Regression

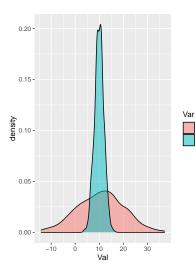
Variance

- *Variance* quantifies the dispersion/spread of a random variable
- It is defined as the expected squared deviation from the mean
- In layman's terms: "On average, how far is a point away from the mean?"

Variance

The *variance* of a random variable X is defined as

$$\mathbb{V}[X] := \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^2\right]$$



Multivariate Linear Regression

Empirical Variance

- In practice we don't know the variance of a random variable
- But we can estimate it

Æ

Empirical variance

Let X be a random variable and x_1,\ldots,x_n be a random sample of X. Then

$$\widehat{\mathbb{E}}[X] := \overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

and

$$\hat{\mathbb{V}}[X] := s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mathbb{E}}[X])^2$$

are unbiased estimators for the expectation and the variance of X

Empirical Variance

• The following equality is easy to derive:

$$\begin{split} \hat{\mathbb{V}}[X] &= s_n^2 = \frac{1}{n-1}\sum_{i=1}^n \left(x_i - \overline{x}_n\right)^2 \\ &= \frac{1}{n-1}\left(\sum_{i=1}^n x_i^2 - \overline{x}_n^2\right) \end{split}$$

Advantage: The sums ∑_{i=1}ⁿ x_i and ∑_{i=1}ⁿ x_i² can both be computed in the same traversal of the data and from them both mean and variance are computable

- Assume you have a random variable X and collected 8 samples: 1, 2, 3, 4, 5, 6, 7, 8. Estimate the mean and the variance of X.
- Assume you have a random variable Y and collected 8 samples: 1, 3, 2, 3, 4, 3, 5, 6. Estimate the mean and the variance of Y.

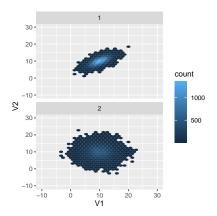
Variance, Covariance and Correlation

Univariate Linear Regression

Multivariate Linear Regression

Covariance matrix

- If we have two random real-valued variables X and Y, we might are naturally interested in the pair (X, Y).
- This is now a 2d random variable.
- We can still ask for the amount of *variance* or the *spread* of it.
- But now we have two magnitudes and a direction of the variance.
- The covariance matrix captures all the information



Covariance matrix

Covariance matrix

Let X and Y be two random variables. Set Z:=(X,Y). Then the $\mathit{covariance\ matrix}$ is defined as

$$S_{X,Y} := \mathbb{E}\left[\left(Z - \mathbb{E}[Z]\right) \left(Z - \mathbb{E}[Z]\right)^\top\right]$$

- It turns out that the diagonal entries of $S_{X,Y}$ are the variances of X resp. Y.
- The off-diagonal entries are called covariances:

$$\Sigma_{X,Y} =: \left(\begin{array}{cc} \mathbb{V}[X] & \operatorname{Cov}(X,Y) \\ \operatorname{Cov}(Y,X) & \mathbb{V}[Y] \end{array} \right)$$

Multivariate Linear Regression

Estimating the covariances

The covariances can be estimated by

$$\begin{split} \hat{\Sigma}_{X,Y} &= \widehat{\mathsf{Cov}}(X,Y) := \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mathbb{E}}[X])(y_i - \hat{\mathbb{E}}[Y]) \\ &= \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i y_i - n \hat{\mathbb{E}}[X] \hat{\mathbb{E}}[Y] \right) \end{split}$$

- Assume you have a pair (X,Y), where you collected 8 samples (1,1),(2,3),(3,2),(4,4),(5,3),(6,3),(7,5),(8,6)
- Compute the (estimated) covariance matrix of (X, Y).

Pearson correlation

- The covariance can be interpreted as a measure of linear dependence of the two random variables
- But its value depend on the variances of the two underlying random variables
- Normalizing the covariance yields the *Pearson correlation coefficient*:

Pearson correlation

Given two real-valued random variables X and Y, the *Pearson* correlation between them is defined as

$$\rho_{X,Y} := \frac{\operatorname{Cov}(X,Y)}{\sqrt{\mathbb{V}[X]} \cdot \sqrt{\mathbb{V}[Y]}} \in [-1,1]$$

- Calculate the Pearson correlation $\hat{\rho}_n \in [-1,1]$ for the sample of the pair (X,Y) from the last exercise.
- Consider the sample version $\hat{\rho}_n \in [-1, 1]$ for a general sample (i.e., use the sample versions for the covariance and the variances). Can you prove that we always have $\hat{\rho}_n \in [-1, 1]$?

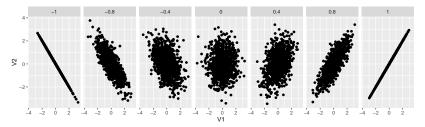
Variance, Covariance and Correlation

Univariate Linear Regression

Multivariate Linear Regression

Interpretation of the Pearson correlation

- \bullet The Pearson correlation $\rho_{X,Y}$ measures the (extent of) linear dependence between X and Y
 - If $\rho_{X,Y}=+1,$ then the data points lie perfectly on a straight line with positive slope
 - If $\rho_{X,Y}=0,$ then there is no linear dependence between X and Y
 - If $\rho_{X,Y}=-1,$ then the data points lie perfectly on a straight line with negative slope



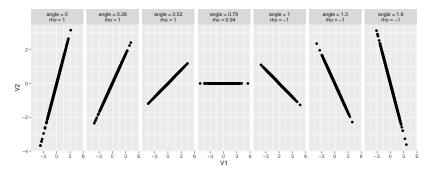
Variance, Covariance and Correlation

Univariate Linear Regression

Multivariate Linear Regression

Interpretation of the Pearson correlation

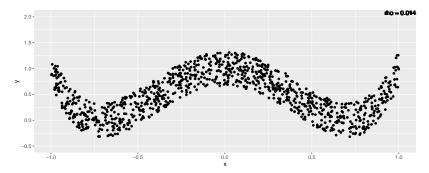
 Notice that the Pearson correlation does not provide detailed information on the slope (other than "upwards" or "downwards"):



Multivariate Linear Regression

Limitations of Pearson correlation

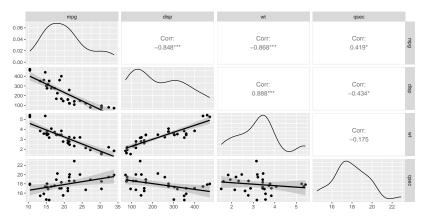
• Also notice that the Pearson correlation only measures *linear* dependence and that it has no direction (i.e., it is symmetric):



Univariate Linear Regression

Multivariate Linear Regression

• Use the ggpairs() function of the {GGally} package to visualize the pairwise correlations of a dataset:



Multivariate Linear Regression

Section 2

Univariate Linear Regression

Linear Regression

• In regression we have a couple of random variables $X_1,\ldots,X_n,Y,\epsilon$ and assume the following relationship to hold:

$$Y=f(X_1,\ldots,X_n)+\epsilon$$

- The function f (called regression function) is unknown (to be estimated) and we generally assume the error ϵ to satisfy $\mathbb{E}[\epsilon]=0$
- In *linear regression* we additionally assume that f has the form $f(X_1,\ldots,X_n):=a_0+a_1X_1+\cdots+a_nX_n$, where the a_1,\ldots,a_n are unknown parameters

• We start with the simples case, univariate linear setting, i.e.

$$f(X) = a + bX$$

for a real-valued random variable \boldsymbol{X}

- General idea:
 - \bullet Collect samples $(x_1,y_1)\ldots,(x_n,y_n)$ from (X,Y)
 - For given parameters \hat{a} and \hat{b} we estimate the error as $L(\hat{a},\hat{b}):=\sum_{i=1}^n(\hat{a}+\hat{b}x_i-y_i)^2$
 - Among all possible \hat{a} and $\hat{b},$ choose those ones that minimize $L(\hat{a},\hat{b})$
- Open questions
 - How can we solve the optimization problem efficiently?
 - How good are our estimates for a and b?

Reminder: Function optimization

- Let $A \subseteq \mathbb{R}^m$ and $f : A \to \mathbb{R}$ be a function. Candidates for (local) extrema are:
- Points $x \in \mathbb{R}^m$ where $\nabla f(x) = 0$
- Points $x \in \mathbb{R}^m$ where $\nabla f'(x)$ is undefined (in particular $x \in \partial A$)
- Remember that $\nabla f(x) := \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)$ is the gradient of f.

• The loss function for the univariate linear regression was

$$F(\hat{a},\hat{b}) = \sum_{i=1}^n (\hat{a} + \hat{b}x_i - y_i)^2$$

• and the partial derivates can be easily seen as

$$\begin{split} &\frac{\partial F}{\partial \hat{a}}(\hat{a},\hat{b}) = \sum_{i=1}^{n} 2(\hat{a} + \hat{b}x_i - y_i) \\ &\frac{\partial F}{\partial \hat{b}}(\hat{a},\hat{b}) = \sum_{i=1}^{n} 2(\hat{a} + \hat{b}x_i - y_i)x_i \end{split}$$

• Setting these two equations to zero yields the following system of linear equations:

Univariate linear regression

Let $(x_1,y_1),\ldots,(x_n,y_n)$ be some data points. Then the best line of fit through the data points is given by $\hat{a}+\hat{b}x$, where \hat{a} and \hat{b} have to fullfill

$$\underbrace{\begin{pmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{pmatrix}}_{=:C} \begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• It is not hard to calculate the following quantities (use Cramer's rule):

$$\begin{split} \det(C) &= n(n-1)\hat{\mathbb{V}}[X] \\ \hat{b} &= \frac{\widehat{\mathsf{Cov}}(X,Y)}{\hat{\mathbb{V}}[X]} = \hat{\rho}_{X,Y} \frac{\sqrt{\hat{\mathbb{V}}[Y]}}{\sqrt{\hat{\mathbb{V}}[X]}} \\ \hat{a} &= \mathbb{E}[\hat{Y}] - \hat{b} \cdot \hat{\mathbb{E}}[X] \end{split}$$

• So the regression line can be fully determined by statistical measures of X and Y.

- \bullet Again consider the samples of $({\cal X},{\cal Y})$ from the previous exercise.
- \bullet You already computed the empirical covariance matrix and the empirical Pearson correlation for (X,Y)
- Compute the linear regression coefficients for the model $Y = a_0 + a_1 X.$

Coefficient of Determination (R-squared)

- \bullet Assume we have samples $(x_1,y_1),\ldots,(x_n,y_n)$ of (X,Y)
- Compute \hat{a},\hat{b} as the parameters of the linear regression line
- Then we can use the model to predict the data points: $\hat{y}_i := \hat{a} + \hat{b} x_i$ for every i
- The *coefficient of determination*, also called *R-squared*, of the model is defined as

$$R^2 := 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \hat{\mathbb{E}}[Y])^2}$$

 \bullet Interpretation: R^2 is the proportion of $y\mbox{-}{\rm variance}$ explained by the linear model

- Again consider the samples of $({\boldsymbol X},{\boldsymbol Y})$ from the previous exercises.
- You already computed the linear regression coefficients for the model $Y = a_0 + a_1 X$.
- Now compute the R-squared metric for this model
- If not done yet, construct a dataframe containing the sample (columns x and y) and use the Im command in R to calculate everything without effort.

Coefficient of Determination (R-squared)

- We always have $0 \le R^2 \le 1$ (for general models we may also obtain negative values)
- If $R^2 \approx 1$, then the linear model explains the data very well
- If $R^2 \approx 0,$ then the linear model does not help much to explain the data

Section 3

Multivariate Linear Regression

Multivariate Linear Regression

Multivariate linear regression

- So far: $Y = a + bX + \epsilon$ (univariate)
- Now: $Y = a_0 + a_1 X_1 + \dots + a_m X_m + \epsilon$ (multivariate)
- We can formulate the loss function as

$$F(\hat{a}) := (X\hat{a} - y)^\top (X\hat{a} - y)$$

where

$$X := \begin{pmatrix} 1 & x_{11} & \dots & x_{1m} \\ 1 & x_{21} & \dots & x_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{nm} \end{pmatrix} \quad \hat{a} := \begin{pmatrix} \hat{a}_0 \\ \hat{a}_1 \\ \vdots \\ \hat{a}_m \end{pmatrix} \quad y := \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

• X collects the observed predictors, y collects the observed outcomes and \hat{a} collects the estimated model coefficients

Multivariate Linear Regression

Multivariate linear regression

• One can show (tedious/ugly, but not hard) that

$$\nabla F(\hat{a}) = 2X^\top X \hat{a} - 2X^\top y$$

• Setting this to zero and rearranging yields

$$\hat{a} = \left(X^\top X \right)^{-1} X^\top y$$

• This is the solution to our problem of estimating the model coefficients \hat{a} , given the data X and y.

Multivariate Linear Regression

Reminder: Linear regression in R

• In the {tidymodels} framework we can use (multivariate) linear regression as follows:

```
data_split <- initial_split(mtcars, prop = 3/4)
model <- linear_reg()
fitted_model <- model |> fit(
   mpg ~ hp + wt, data = data_split |> training()) |>
   extract_fit_engine()
```

Reminder: Linear regression in R

summary(fitted_model)

Call: stats::lm(formula = mpg ~ hp + wt, data = data) Residuals: Min 10 Median 30 Max -3.3192 -1.1228 0.0191 0.5908 4.6776 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 35.631428 1.413716 25.204 < 2e-16 *** -0.035951 0.008776 -4.096 0.000516 *** hp -3 244213 0 536678 -6 045 5 34e-06 *** wt Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.945 on 21 degrees of freedom Multiple R-squared: 0.8815, Adjusted R-squared: 0.8702 F-statistic: 78.12 on 2 and 21 DF. p-value: 1.876e-10