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Abstract. Looking at bivariate copulas from the perspective of conditional distribu-
tions and considering weak convergence of almost all conditional distributions yields the
notion of weak conditional convergence. At first glance, this notion of convergence for
copulas might seem far too restrictive to be of any practical importance - in fact, given
samples of a copula C the corresponding empirical copulas do not converge weakly con-
ditional to C with probability one in general. Within the class of Archimedean copulas
and the class of Extreme Value copulas, however, standard pointwise convergence and
weak conditional convergence can even be proved to be equivalent. Moreover, it can be
shown that every copula C is the weak conditional limit of a sequence of checkerboard
copulas. After proving these three main results and pointing out some consequences we
sketch some implications for two recently introduced dependence measures and for the
nonparametric estimation of Archimedean and Extreme Value copulas.

1. Introduction

Suppose that {Cθ : θ ∈ Θ} is a parametric class of bivariate copulas with Θ ⊆ Rd

for some d ∈ N and let {Kθ : θ ∈ Θ} denote the corresponding conditional distributions
(Markov kernels), i.e., if X, Y are uniformly distributed on [0, 1] and (X, Y ) has distribu-
tion function Cθ then Kθ(x,E) = P(Y ∈ E|X = x). Many standard classes of copulas
are not only continuous in the parameter with respect to pointwise/uniform convergence
(see [10, 30]) but exhibit the even stronger property that if (θn)n∈N converges to θ then
almost all conditional distributions (Kθn(x, ·))n∈N converge weakly to Kθ(x, ·). In the
sequel we will refer to weak convergence of almost all conditional distributions as weak
conditional convergence. It is straightforward to verify that (among many others) the
family of Gaussian copulas and the family of t-copulas exhibit the just mentioned conti-
nuity with respect to the parameter. Moreover, leaving the absolutely continuous setting,
the same is true, e.g., for the Marshall-Olkin family.

Despite the afore-mentioned examples, at first glance, weak conditional convergence
might seem as a concept far too restrictive to be of any practical importance outside the
purely parametric setting. This impression is reinforced by the fact that given samples
(X1, Y1), (X2, Y2), . . . from a copula C and letting Ên denote the corresponding empirical
copula (bivariate interpolation of the induced subcopula, see [30]) we do not have weak

conditional convergence of (Ên)n∈N to C unless C is completely dependent in the sense
that random variable Y is a measurable function of random variable X (see [26]).

As we will demonstrate in this contribution, however, within the class of Archimedean
copulas and the class of Extreme Value copulas (neither of them being a parametric class of
the afore-mentioned type) standard pointwise/uniform convergence and weak conditional
convergence are even equivalent, a result having direct implications for the dependence
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measures ζ1 and r introduced in [36] and [9], respectively, as well as for the nonparametric
estimation of Archimedean and Extreme Value copulas (see [1, 13, 14] and [15, 19]). We
will show that convexity of the univariate ‘generating’ functions (the normalized generator
in the Archimedean and the Pickands dependence function in the Extreme Value case)
is the key property entailing weak conditional convergence. Additionally, building upon
the theorems in [27] we will derive a universal approximation result with respect to weak
conditional convergence and show that for every bivariate copula C we can find a sequence
(Cn)n∈N of checkerboard copulas that converges weakly conditional to the copula C.

The authors’ interest in studying convergence of Archimedean copulas was triggered by
[4] where the authors among other things showed that pointwise/uniform convergence of a
sequence of Archimedean copulas to an Archimedean copula is equivalent to convergence
of the corresponding sequence of Kendall distribution functions. In our contribution we
first derive a slightly modified version of this result (including the fact that we can have
convergence of the copulas without having convergence of the corresponding generators
in 0, see Theorem 4.1) and then go one step further (see Theorem 4.2) and prove the
equivalence of six different notions of convergence (some involving the copulas, some the
generators), weak conditional convergence being one of them.

The rest of this contribution is organized as follows: Section 2 gathers preliminaries and
notations that will be used throughout the paper. In Section 3 we formally define weak
conditional convergence, prove that checkerboard copulas are dense with respect to weak
conditional convergence, and show that weak conditional convergence implies convergence
with respect to the metric D1 introduced in [36] but in general not vice versa. Section
4 derives the afore-mentioned equivalence of pointwise/uniform and weak conditional
convergence within the family of Archimedean copulas in several steps. In Section 5 we
prove an analogous characterization of convergence within the class of Extreme Value
copulas. Direct consequences of these two main results to the estimation of Archimedean
and Extreme Value copulas are sketched and illustrated via simulations in Section 6.
Finally, we use the obtained results for estimating the recently introduced coefficient
of correlation (see [5]) and compare the performance of the estimators incorporating or
ignoring the Extreme Value/Archimedean information.

2. Notation and preliminaries

In the sequel we will let C denote the family of all bivariate copulas. For each copula C
the corresponding doubly stochastic measure will be denoted by µC , i.e. µC([0, x]×[0, y]) =
C(x, y) for all x, y ∈ [0, 1], PC will denote the family of all doubly stochastic measures.
For more background on copulas and doubly stochastic measures we refer to [10, 30]. For
every metric space (S, d) the Borel σ-field on S will be denoted by B(S).

In what follows Markov kernels will play a prominent role. A Markov kernel from
R to R is a mapping K : R × B(R) → [0, 1] such that for every fixed E ∈ B(R) the
mapping x 7→ K(x,E) is (Borel-)measurable and for every fixed x ∈ R the mapping
E 7→ K(x,E) is a probability measure. Given two real-valued random variables X, Y
on a probability space (Ω,A,P) we say that a Markov kernel K is a regular conditional
distribution of Y given X if K(X(ω), E) = E(1E ◦ Y |X)(ω) holds P-almost surely for
every E ∈ B(R). It is well-known (see, e.g., [22, 25]) that for X, Y as above, a regular
conditional distribution of Y given X always exists and is unique for PX-a.e. x ∈ R. If
(X, Y ) has distribution function H (in which case we will also write (X, Y ) ∼ H and
let µH denote the corresponding probability measure on B(R2)) we will let KH denote
(a version of) the regular conditional distribution of Y given X and simply refer to it
as Markov kernel of H. If C is a copula then we will consider the Markov kernel of C



3

automatically as mapping KC : [0, 1] × B([0, 1]) → [0, 1]. Defining the x-section of a
set G ∈ B(R2) as Gx := {y ∈ R : (x, y) ∈ G} the so-called disintegration theorem (see
[22, 25]) yields ∫

R

KH(x,Gx) dPX(x) = µH(G).(2.1)

As a direct consequence, for every C ∈ C we get∫
[0,1]

KC(x,E) dPX(x) =

∫
[0,1]

KC(x,E) dλ(x) = λ(E)

for every E ∈ B([0, 1]), whereby λ denotes the Lebesgue measure on R. For more back-
ground on conditional expectation and general disintegration we refer to [22, 25].

We call a copula C completely dependent if there exists a λ-preserving transformation
h : [0, 1]→ [0, 1] (i.e., a transformation fulfilling λ(h−1(E)) = λ(E) for every E ∈ B([0, 1]))
such that K(x,E) := 1E(h(x)) is a Markov kernel of C. For more properties of complete
dependence we refer to [26] as well as to [36] and the references therein.

Markov kernels can be used to define metrics stronger than the standard uniform metric
d∞, defined by

d∞(C1, C2) := max
(x,y)∈[0,1]2

|C1(x, y)− C2(x, y)|,(2.2)

on C. It is well known that the metric space (C, d∞) is compact and that pointwise
and uniform convergence of a sequence of copulas (Cn)n∈N are equivalent (see [10, 37]).
Following [36] and defining

D1(C1, C2) :=

∫
[0,1]

∫
[0,1]

|KC1(x, [0, y])−KC2(x, [0, y])| dλ(x)dλ(y),(2.3)

D2
2(C1, C2) :=

∫
[0,1]

∫
[0,1]

(KC1(x, [0, y])−KC2(x, [0, y]))2 dλ(x)dλ(y),

D∞(C1, C2) := sup
y∈[0,1]

∫
[0,1]

|KC1(x, [0, y])−KC2(x, [0, y])| dλ(x)

it can be shown that D1, D2, D∞ are metrics generating the same topology on C. In the
sequel we will mainly work with D1 and refer to [11, 36] for more information on D2 and
D∞. The metric space (C, D1) is complete and separable but not compact. Moreover,
we have D1(C,Π) ∈ [0, 1

3
] for every C ∈ C and D1(C,Π) is maximal if and only if C is

completely dependent. The metric D1 was originally introduced in order to construct a
dependence measure which, contrary to d∞, is capable of separating independence and
complete dependence. The resulting D1-based dependence measure ζ1 introduced in [36]
is defined as

ζ1(C) := 3 ·D1(C,Π)(2.4)

for every C ∈ C. In the sequel we will also consider the dependence measure r(X, Y ) =
r(C) introduced in [9] as

r(C) := 6 ·
∫

[0,1]

∫
[0,1]

KC(x, [0, y])2dλ(x)dλ(y)− 2.(2.5)
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It is straightforward to verify that r(C) can be expressed in terms of D2 and that r(C) =
6 ·D2

2(C,Π) holds. Both ζ1 and r attain values in [0, 1], are 0 if, and only if C = Π, and
1 if, and only if C is completely dependent.

A symmetric version of D1-convergence (or, equivalently, D2-converence) was intro-
duced by Mikusiński and Taylor in [29] under the name ∂-convergence: A sequence

(Cn)n∈N ∂-converges to a copula C ∈ C (Cn
∂−→ C for short) if and only if

lim
n→∞

D1(Cn, C) +D1(Ct
n, C

t) = 0.

We will see in the next section that in general weak conditional convergence does not imply
∂-converges (Example 3.4) nor vice versa. For a thorough survey of different notions on
convergence of copulas we refer to [35].

3. Weak conditional convergence and checkerboards

Sticking to the idea of viewing bivariate copulas in terms of their conditional distribu-
tions and considering weak convergence gives rise to what we refer to as weak conditional
convergence in the sequel:

Definition 3.1. Suppose that C,C1, C2, . . . are copulas and let KC , KC1 , KC2 , . . . be (ver-
sions of) the corresponding Markov kernels. We will say that (Cn)n∈N converges weakly
conditional to C if and only if for λ-almost every x ∈ [0, 1] we have that the sequence
(KCn(x, ·))n∈N of probability measures on B([0, 1]) converges weakly to the probability

measure KC(x, ·). In the latter case we will write Cn
wcc−−→ C (where ‘wcc’ stands for ‘weak

conditional convergence’).

As already mentioned in the Introduction, many standard parametric classes {Cθ :
θ ∈ Θ} of copulas depend on the parameter θ weakly conditional in the sense that
if (θn)n∈N converges to θ then the corresponding sequence (Cθn)n∈N converges weakly
conditional to Cθ. This is obviously true for parametric classes {Cθ : θ ∈ Θ} of absolutely
continuous copulas whose corresponding densities {kθ : θ ∈ Θ} have the property that if
(θn)n∈N converges to θ ∈ Θ then (kθn)n∈N converges to kθ λ2-almost everywhere (whereby
λ2 denotes the two-dimensional Lebesgue measure on B(R2)). In fact, in this case the
corresponding Markov kernels KCθn

are given by

KCθn
(x, [0, y]) =

∫
[0,y]

kθn(x, s) dλ(s)(3.1)

and if we let Λ ∈ B([0, 1]2) denote the set of all points (x, y) fulfilling limn→∞ kθn(x, y) =
kθ(x, y) then disintegration yields λ(Λx) = 1 for λ-almost every x ∈ [0, 1], so the property
follows immediately. It is straightforward to verify that (among many others) the family
of Gaussian copulas and the family of t-copulas fulfill this property.

The same is true for other, not necessarily absolutely continuous classes like the Marshall-
Olkin family (Mα,β)(α,β)∈[0,1]2 (see [7, 10, 30]) given by

Mα,β(x, y) =

{
x1−α y if xα ≥ yβ

x y1−β if xα < yβ.
(3.2)

According to [36] the corresponding Markov kernel KMα,β
is given by

KMα,β
(x, [0, y]) =

{
(1− α)x−α y if yβ < xα

y1−β if yβ ≥ xα
(3.3)
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and it is straightforward to verify that if the parameter vector (αn, βn)n∈N converges to

(α, β) then we also have Mαn,βn
wcc−−→Mα,β.

Before focusing on the Archimedean and the Extreme Value setting we prove a general
approximation result saying that the class of checkerboard copulas is dense in C w.r.t.
weak conditional convergence (see Theorem 3.2). Recall that a copula C is called a
checkerboard copula with resolution N ∈ N if and only if µC distributes its mass uniformly
on each rectangle RN

ij = [ i−1
N
, i
N

]× [ j−1
N
, j
N

] with i, j ∈ {1, . . . , N}. We will refer to SN as
the family of all checkerboard copulas with resolution N , the set S =

⋃∞
N=1 SN is called

the class of all checkerboard copulas (checkerboards for short). For every N ∈ N the
(unique) checkerboard copula CBN(C) ∈ SN fulfilling

µC(RN
ij ) = µCBN (C)(R

N
ij )

for all i, j ∈ {1, . . . , N} will be referred to as N-checkerboard approximation of the copula
C.

It is well-known that the class of checkerboard copulas S is dense in (C, d∞) and in
(C, D1), see [10, 27, 36]. The following theorem implies these two interrelations:

Theorem 3.2. Given a copula C, there is a sequence of elements of S that converges
to C with respect to weak conditional convergence. In other words, S is dense in C with
respect to weak conditional convergence.

Proof. Fix C ∈ C and suppose that KC is a Markov kernel of C. We are going to show that
(CB2n(C))n∈N converges weakly conditional to C. Using Lipschitz continuity of copulas
in each coordinate, for every y of the form y = j

2m
with m ∈ N and j ∈ {0, . . . , 2m} there

exists a set Λy ∈ B([0, 1]) with the following three properties:

(1) For every x ∈ Λy the function t 7→ C(t, y) is differentiable at x and fulfills
∂C
∂x

(x, y) = KC(x, [0, y]),
(2) λ(Λy) = 1,

(3) Λy ⊆
(⋃∞

l=1{0,
1
2l
, 2

2l
, . . . , 2l−1

2l
, 1}
)c

.

LettingW denote the set of all points y of the form y = j
2m

withm ∈ N and j ∈ {0, . . . , 2m}
it follows that W is countably infinite, hence setting Λ =

⋂
y∈W Λy yields λ(Λ) = 1.

Consider y = j
2m
∈ W and x ∈ Λ. For every n ≥ m there exists exactly one index

in(x) ∈ {0, . . . , 2n} with

x ∈
(
in(x)− 1

2n
,
in(x)

2n

)
.

Considering that t 7→ KCB2n (C)(t, ·) is constant on the interval
(
in(x)−1

2n
, in(x)

2n

)
disintegra-

tion yields

C

(
in(x)

2n
, y

)
− C

(
in(x)− 1

2n
, y

)
=

∫
( in(x)−1

2n
,
in(x)
2n ]

KCB2n (C)(t, [0, y])dλ(t)

=
1

2n
KCB2n (C)(x, [0, y]),

from which we directly get

KCB2n (C)(x, [0, y]) =
C
(
in(x)

2n
, y
)
− C

(
in(x)−1

2n
, y
)

1
2n

n→∞−→ ∂C

∂x
(x, y) = KC(x, [0, y]).
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Since (x, y) ∈ Λ ×W was arbitrary we have shown that for each x ∈ Λ the conditional
distribution functions y 7→ KCB2n (C)(x, [0, y]) converge to y 7→ KC(x, [0, y]) for every
y ∈ W , i.e., on a dense set. Having this, weak conditional convergence of (CB2n(C))n∈N
to C follows immediately. �

We conclude this section with an example clarifying the interrelation between the afore-
mentioned notions of convergence: According to Lemma 7 in [36] weak conditional con-
vergence of (Cn)n∈N to C implies convergence w.r.t. D1. Additionally, convergence w.r.t.
D1 implies convergence in d∞ but not vice versa. The following simple example shows
that we can have D1-convergence without having weak conditional convergence.

Example 3.3. Let N ∈ N, i ∈ {1, . . . , N} and n = 2N + i− 2. Define the copula Cn via
its Markov kernel by

KCn(x, [0, y]) =

{
1[0,y](2

N · x+ 1− i) if x ∈ [ i−1
2N
, i

2N
]

y if x ∈ [0, 1] \ [ i−1
2N
, i

2N
].

Then Cn does not converge weakly conditional to Π since for every x ∈ [0, 1] the probabil-
ity measure KCn(x, ·) is, on the one hand, degenerated for infinitely many n ∈ N and, on
the other hand, coincides with λ restricted to [0, 1] infinitely many times too. Nevertheless
Cn converges to Π w.r.t. D1 since

D1(Cn,Π) ≤ 1

2N

holds and if n goes to infinity then so does N .

We conclude this section with an example showing that, in contrast to convergence w.r.t.
to d∞, neither convergence w.r.t. D1 nor weak conditional convergence is a symmetric
concept, i.e., considering Markov kernels KCtn(x, ·) instead of KCn(x, ·), n ∈ N, may yield
a different notion of convergence (as usual Ct denotes the transpose of C, i.e. Ct(x, y) =
C(y, x)).

Example 3.4. For every n ∈ N define the λ-preserving transformation hn : [0, 1]→ [0, 1]
by

hn(x) := 2n x (mod 1)

and let Cn denote the corresponding completely dependent copula. Since KCtn(x, .) is the
(discrete) uniform distribution on { x

2n
+ i

2n
: i ∈ {0, . . . , 2n − 1}}, KCtn(x, .) converges

weakly to KΠ(x, .) for λ-almost every x ∈ [0, 1] and we have

Ct
n

wcc−−→ Π,

implying that (Ct
n)n∈N converges to Π w.r.t. D1. Additionally (see [36, Theorem 14])

D1(Cn,Π) = 1/3 holds for every n ∈ N from which it follows immediately that (Cn)n∈N
does not converge to Π neither weakly conditional nor w.r.t. D1. It can even be shown
that (Cn)n∈N does not converge in (C, D1) at all: If (Cn)n∈N would converge to some copula
C w.r.t. D1 then according to [36, Proposition 15]) C would be completely dependent, i.e.,
there would be some λ-preserving transformation h such that C = Ch holds. Considering
that D1-convergence implies d∞-convergence Ct

h = Π would follow, a contradiction since
Ct
h is singular whereas Π is absolutely continuous.

Remark 3.5. The preceding examples imply that weak conditional convergence does not
imply ∂-convergence (Example 3.4) nor vice versa (Example 3.3).
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Figure 1. Supports of the copulas C3, C4, C5, C6 considered in Example 3.3.

4. Archimedean copulas

Recall that a generator of a bivariate Archimedean copula (see [30]) is a convex and
strictly decreasing function ϕ : [0, 1] → [0,∞] with ϕ(1) = 0. Every generator induces a
copula C via

C(x, y) = ϕ−(ϕ(x) + ϕ(y)), x, y ∈ [0, 1](4.1)

where ϕ− : [0,∞]→ [0, 1] denotes the pseudoinverse of ϕ defined by

ϕ−(x) :=

{
ϕ−1(x) if x ∈ [0, ϕ(0+))

0 if x ≥ ϕ(0+)
(4.2)

where ϕ(x±) := limt→x± ϕ(t) denotes the respective one-sided limit. We refer to C as
the Archimedean copula induced by ϕ and call C strict if ϕ(0+) = ∞ and non-strict
otherwise. In what follows Car will denote the family of all bivariate Archimedean copulas.

Since ϕ is convex obviously ϕ(0) ≥ ϕ(0+) holds. Defining the right-continuous version
ψ of ϕ by

ψ(t) :=

{
ϕ(0+) if t = 0

ϕ(t) if t ∈ (0, 1]

it is straightforward to verify that ψ and ϕ generate the same copula. In other words, the
value of ϕ at 0 is irrelevant and we may, without loss of generality, from now on assume
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that all generators are right-continuous at 0. Additionally, since for every generator ϕ
and every constant a > 0 we have that a · ϕ generates the same copula we will from now
on also assume (without explicit reference) that the generator is normalized in the sense
that ϕ(1

2
) = 1 holds.

Following [12, 30] we define the t-level set Lt of the Archimedean copula C by

Lt := {(x, y) ∈ [0, 1]2 : C(x, y) = t}

and the t-level function f t : [t, 1]→ [0, 1] by f t(x) := ϕ−1(ϕ(t)− ϕ(x)) implying that

graph(f t) = {(x, f t(x)) : x ∈ [t, 1]} = {(x, y) ∈ [0, 1]2 : C(x, y) = t} = Lt

holds for every t ∈ (0, 1].
For every generator ϕ : [0, 1] → [0,∞] we will let D+ϕ(x) (D−ϕ(x)) denote the right-

hand (left-hand) derivative of ϕ at x ∈ (0, 1). Convexity of ϕ implies that D+ϕ(x) =
D−ϕ(x) holds for all but at most countably many x ∈ (0, 1), i.e. ϕ is differentiable outside
a countable subset of (0, 1), and that D+ϕ is non-decreasing and right-continuous (see
[23, 32]). In the sequel we will let Cont(D+ϕ) ⊆ (0, 1) denote the set of all continuity
points of D+ϕ in (0, 1) (by definition, 0 and 1 are not contained in Cont(D+ϕ)) and make
use of the fact that [0, 1] \ Cont(D+ϕ) is at most countably infinite and has Lebesgue
measure 0. Setting D+ϕ(0) = −∞ in case of strict ϕ as well as D+ϕ(1) = 0 (for strict
and non-strict ϕ) allows to view D+ϕ as non-decreasing and right-continuous function on
the full unit interval [0, 1]. Additionally (again see [23, 32]) we have D−ϕ(x) = D+ϕ(x−)
for every x ∈ (0, 1).

If ϕ is strict then according to [12]

KC(x, [0, y]) =

{
D+ϕ(x)

D+ϕ(C(x,y))
if x ∈ (0, 1)

1 if x ∈ {0, 1}
(4.3)

is (a version of) the Markov kernel of C, if ϕ is non-strict, then

KC(x, [0, y]) =


0 if x ∈ (0, 1), y < f 0(x)

D+ϕ(x)
D+ϕ(C(x,y))

if x ∈ (0, 1), y ≥ f 0(x)

1 if x ∈ {0, 1}
(4.4)

is a (version of a) Markov kernel of C. Recall that for every Archimedean copula C with
generator ϕ the Kendall distribution function is given by (see, e.g., [14])

FKendall(x) = x− ϕ(x)

D+ϕ(x)
.(4.5)

We now prove in several steps that in Car weak conditional convergence and pointwise
convergence coincide. The following theorem serves as starting point for this result. Up
to a slight modification this intermediate theorem was already established by Charpentier
and Segers in [4], however, the slight modification will turn out to be crucial in the sequel.

Theorem 4.1. Let C,C1, C2, . . . be Archimedean copulas with generators ϕ, ϕ1, ϕ2, . . .,
respectively. Then the following conditions are equivalent:

(a) lim
n→∞

Cn(x, y) = C(x, y) for all x, y ∈ [0, 1],

(b) lim
n→∞

FKendall
n (x) = FKendall(x) for all x ∈ Cont(D+ϕ),

(c) lim
n→∞

ϕn(x) = ϕ(x) for all x ∈ (0, 1],

(d) lim
n→∞

D+ϕn(x) = D+ϕ(x) for all x ∈ Cont(D+ϕ).
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Proof. The equivalence of (a) and (b) can be found in [4, Proposition 2] and the equiva-
lence of (a) and (c) is contained in [24, Theorem 8.14] where the authors prove equivalence
of pointwise convergence of the sequence of multiplicative generators and the pointwise
convergence of the induced continuous Archimedean t-norms which readily translates to
the copula setting. The fact that (c) implies (d) is a direct consequence of the convexity
of the generators, see [33].

Finally, suppose that (d) holds and consider x ∈ Cont(D+ϕ). For every ε > 0 we can
find an index n0 ∈ N such that for all n ≥ n0 we have D+ϕ(x) − ε < D+ϕn(x). Using
monotonicity of D+ϕn we get

D+ϕ(x)− ε ≤ D+ϕn(x) ≤ D+ϕn(t) ≤ 0

for n ≥ n0 and every t ∈ [x, 1]. Having this, Dominated convergence yields

−ϕ(y) =

∫
[y,1]

D+ϕ(t) dt =

∫
[y,1]

lim
n→∞

D+ϕn(t) dt = lim
n→∞

∫
[y,1]

D+ϕn(t) dt = − lim
n→∞

ϕn(y)

for every y ∈ [x, 1]. Considering that Cont(D+ϕ) is dense in (0, 1] condition (c) now
follows immediately. �

The afore-mentioned modification of the result in [4] is that it may happen that a
sequence of Archimedean copulas (Cn)n∈N converges to an Archimedean copula C although
the corresponding generators (ϕn)n∈N do not converge to ϕ in the point 0.

We now state the main result of this section saying that pointwise convergence and
weak conditional convergence coincide in Car:

Theorem 4.2. Let C,C1, C2, . . . be Archimedean copulas with generators ϕ, ϕ1, ϕ2, . . .,
respectively. Then the following assertions are equivalent:

(a) lim
n→∞

Cn(x, y) = C(x, y) for all x, y ∈ [0, 1],

(b) lim
n→∞

FKendall
n (x) = FKendall(x) for all x ∈ Cont(D+ϕ),

(c) lim
n→∞

ϕn(x) = ϕ(x) for all x ∈ (0, 1],

(d) lim
n→∞

D+ϕn(x) = D+ϕ(x) for all x ∈ Cont(D+ϕ),

(e) lim
n→∞

D1(Cn, C) = 0,

(f) Cn
wcc−−→ C for n→∞.

Remark 4.3. Since Archimedean copulas are symmetric Theorem 4.2 implies that within
the class of all Archimedean copulas weak conditional convergence and ∂-convergence are
equivalent (compare with Remark 3.5).

We are now going to prove Theorem 4.2 by showing that each of the conditions (a) to
(d) from Theorem 4.1 implies weak conditional convergence. Doing so we will work with
level curves and distinguish two cases concerning the 0-level curve f 0 of the limit copula.
For the first case, we present two different proofs since they use different ideas - the first
one builds upon convexity of the generators and direct consequences to the sequence of
derivatives, the second one uses some additional information about the behaviour of the
corresponding sequence of level curves as described in the next lemma:
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Lemma 4.4. Let C,C1, C2, . . . be non-strict Archimedean copulas with generators
ϕ, ϕ1, ϕ2, . . ., respectively. If (ϕn)n∈N converges pointwise to ϕ on (0, 1] then the following
two assertions hold:

(i) lim inf
n→∞

ϕn(0) ≥ ϕ(0),

(ii) f t(x) ≥ lim sup
n→∞

f tn(x) for every t ∈ [0, 1) and every x ∈ [t, 1].

Proof. To prove assertion (i) we proceed as follows: Considering that for every generator
ψ and every z ∈ (0, 1) by convexity we have ψ(0) ≥ ψ(z) − z · D+ψ(z) and applying
Theorem 4.1 to the case z ∈ Cont(D+ϕ) yields

lim inf
n→∞

ϕn(0) ≥ lim inf
n→∞

(
ϕn(z)− z ·D+ϕn(z)

)
= ϕ(z)− z ·D+ϕ(z) > ϕ(z).

Since for every ε > 0 we can choose z ∈ Cont(D+ϕ) in such a way that ϕ(z) > ϕ(0)− ε
holds assertion (i) now follows. To prove assertion (ii) fix t ∈ [0, 1) and consider y > f t(x).
In this case we have ϕ(x) + ϕ(y) < ϕ(t) implying that there exists an index n0 ∈ N such
that ϕn(x) + ϕn(y) < ϕn(t), hence y > f tn(x), holds for every n ≥ n0. It follows that
y ≥ lim supn→∞ f

t
n(x) from which the assertion follows immediately since y > f t(x) was

arbitrary. �

We now use the previous result to show level curve convergence:

Lemma 4.5. Let C,C1, C2, . . . be Archimedean copulas with generators ϕ, ϕ1, ϕ2, . . . con-
verging pointwise on (0, 1]. Then for every t > 0 the t-level curves converge pointwise,
i.e.,

lim
n→∞

f tn(x) = f t(x)(4.6)

holds for all x ∈ [t, 1]. If, in addition, limn→∞ ϕn(0) = ϕ(0) holds then eq. (4.6) is also
true for t = 0 and x ∈ [0, 1].

Proof. Suppose that t > 0. As a by-product of [24, Theorem 8.14] we obtain uniform
convergence of the sequence (ϕ−n )n∈N to ϕ− on each compact interval of the form [0, s]
with s ∈ [0,∞). Fix x ∈ [t, 1], set s := 2 supn∈N ϕn(t) <∞ and define zn := ϕn(t)−ϕn(x).
Then (zn)n∈N converges to z := ϕ(t) − ϕ(x) for n → ∞ and, using the afore-mentioned
uniform convergence of (ϕ−n )n∈N on [0, s], the equality limn→∞ f

t
n(x) = f t(x) follows.

Notice that the second assertion is trivial for strict ϕ, so it remains to prove the assertion
for ϕ(0) < ∞. Fix x ∈ (0, 1). If f 0(x) = 0 then the result follows directly from Lemma
4.4 part (ii). Suppose therefore that f 0(x) > 0. Then for every y ∈ (0, f 0(x)) we have
ϕ(x)+ϕ(y) > ϕ(0) and we can find an index n0 ∈ N such that ϕn(x)+ϕn(y) > ϕn(0), hence
y < f 0

n(x), holds for every n ≥ n0. As direct consequence we get f 0(x) ≤ lim infn→∞ f
0
n(x),

which in combination with Lemma 4.4 assertion (ii) yields

f 0(x) ≤ lim inf
n→∞

f 0
n(x) ≤ lim sup

n→∞
f 0
n(x) ≤ f 0(x).

This completes the proof. �

Recall that for univariate distribution functions F, F1, F2, . . . weak convergence of (Fn)n∈N
to F is equivalent to pointwise convergence on a dense subset (see, e.g., [2]). In the fol-
lowing two lemmata we prove convergence on a dense set above and below the zero level
curve f 0 of the limit copula C. Notice that the first lemma is sufficient within the family
of strict Archimedean copulas since in this case f 0(x) = 0 for every x ∈ (0, 1].
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Lemma 4.6. Let C,C1, C2, . . . be Archimedean copulas with generators ϕ, ϕ1, ϕ2, . . . and
assume that one of the conditions of Theorem 4.1 holds. Then there exists a set Λ ∈
B([0, 1]) fulfilling λ(Λ) = 1 such that for every x ∈ Λ we have that

lim
n→∞

KCn(x, [0, y]) = KC(x, [0, y])(4.7)

holds for every y ∈ Ux ⊆ [f 0(x), 1], where Ux is dense in [f 0(x), 1].

Proof (1). Setting Λ := Cont(D+ϕ) we obviously have λ(Λ) = 1. We are going to prove
the even stronger property that for every x ∈ Λ the identity

lim
n→∞

|KCn(x, [0, y])−KC(x, [0, y])| = lim
n→∞

∣∣∣∣ D+ϕn(x)

D+ϕn(Cn(x, y))
− D+ϕ(x)

D+ϕ(C(x, y))

∣∣∣∣(4.8)

= 0

holds for λ-almost all y ∈ [f 0(x), 1]. First of all notice that the set

Ux := {y ∈ [f 0(x), 1] : C(x, y) ∈ Cont(D+ϕ)}

is of full measure in [f 0(x), 1]. In fact, for x ∈ (0, 1) the function hx : [f 0(x), 1] → [0, x],
defined by hx(y) := C(x, y) is an increasing homeomorphism (see [30]) and therefore the
set h−1

x (Cont(D+ϕ)c) is at most countably infinite. Convexity of the generators implies
that the sequence (D+ϕn)n∈N of derivatives converges continuously to D+ϕ on Cont(D+ϕ)
(see [33]), hence we obtain

lim
n→∞

D+ϕn(Cn(x, y)) = D+ϕ(C(x, y))

from which the desired property follows. �

Proof (2). First of all notice that for t, x ∈ Cont(D+ϕ) we have

KCn(x, [0, f tn(x)]) =
D+ϕn(x)

D+ϕn(C(x, f tn(x)))
=
D+ϕn(x)

D+ϕn(t)
(4.9)

and the right-hand side converges to KC(x, [0, f t(x)]) by Theorem 4.1. Exploiting this fact
we consider x ∈ Cont(D+ϕ) and proceed as follows: Fix ε > 0 again and let y ∈ [f 0(x), 1]
denote a continuity point of the map v 7→ KC(x, [0, v]). Furthermore choose t, s ∈
Cont(D+ϕ) with t < s in such a way that y ∈ (f t(x), f s(x)) and KC(x, [f t(x), f s(x)]) < ε
holds. According to Lemma 4.5 there exists some index n0 ∈ N such that for all n ≥ n0

we have y < f sn(x), which using eq. (4.6) implies

KCn(x, [0, y]) ≤ KCn(x, [0, f sn(x)])
n→∞−−−→ KC(x, [0, f s(x)]) ≤ KC(x, [0, y]) + ε.

As a direct consequence we get

lim sup
n→∞

KCn(x, [0, y]) ≤ KC(x, [0, y]) + ε.

Replacing s by t and proceeding analogously yields

lim inf
n→∞

KCn(x, [0, y]) ≥ KC(x, [0, y])− ε,

which completes the proof. �

As second step we consider the case 0 < y < f 0(x) (implying that C is non-strict). The
following simple lemma will be crucial for the proof of Lemma 4.8:



12

Lemma 4.7. Suppose that (X, d1) is a compact metric space and that (Y, d2) is an-
other (not necessarily compact) metric space. Furthermore let f : X → Y be an ar-
bitrary function and (xn)n∈N a sequence in (X, d1). If there exists some y ∈ Y such
that for every convergent subsequence (xnj)j∈N we have limj→∞ d2(f(xnj), y) = 0 then
limn→∞ d2(f(xn), y) = 0 follows.

Proof. Suppose that the assumptions of the lemma are fulfilled but the sequence (yn)n∈N
with yn := f(xn) does not converge to y for n → ∞. In this case there exists some
ε > 0 and a subsequence (ynj)j∈N with d2(ynj , y) ≥ ε for every j ∈ N. Compactness of
(X, d1) implies the existence of a subsequence (xnjl )l∈N of (xnj)j∈N, and, by assumption,
this sequence fulfills

lim
l→∞

d2(ynjl , y) = lim
l→∞

d2(f(xnjl ), y) = 0,

a contradiction. �

To simplify notation we say that limn→∞ ϕn(0) =∞ if, and only if for every N ∈ N there
exists some index n0 ∈ N such that for all n ≥ n0 we have ϕn(0) > N . Lemma 4.4 part (i)
together with Lemma 4.7 allow us to distinguish the following three types of convergent
subsequences (ϕnj)j∈N of (ϕn)n∈N: (a) limj→∞ ϕnj(0) = ϕ(0), (b) limj→∞ ϕnj(0) = ∞ or
(c) limj→∞ ϕnj(0) = α ∈ (ϕ(0),∞).

Lemma 4.8. Let C,C1, C2, . . . be Archimedean copulas with generators ϕ, ϕ1, ϕ2, . . . and
assume that one of the conditions of Theorem 4.1 holds. Then there exists a set Λ ∈
B([0, 1]) fulfilling λ(Λ) = 1 such that for every x ∈ Λ we have that

lim
n→∞

KCn(x, [0, y]) = 0 = KC(x, [0, y])(4.10)

holds for every y < f 0(x).

Proof. As in the previous proof we set Λ = Cont(D+ϕ). Fix x ∈ Cont(D+ϕ) and y ∈
(0, f 0(x)) and distinguish the following two different situations:
(a) Suppose that (ϕnj)j∈N is a subsequence of (ϕn)n∈N fulfilling limj→∞ ϕnj(0) = ϕ(0).
According to Lemma 4.5 we have limj→∞ f

0
nj

(x) = f 0(x), so there exists an index j0 ∈ N
such that y < f 0

nj
(x), hence KCnj

(x, [0, y]) = 0 = KC(x, [0, y]), holds for every j ≥ j0,

from which limj→∞KCnj
(x, [0, y]) = KC(x, [0, y]) follows immediately.

(b) & (c) Suppose that (ϕnj)j∈N is a subsequence of (ϕn)n∈N fulfilling limj→∞ ϕnj(0) =∞
or limj→∞ ϕnj(0) =: α ∈ (ϕ(0),∞). Choose ε > 0 in such a way that y ≤ f 0(x)− ε holds
and define the set Mε (see Figure 2) by

Mε = {(a, b) ∈ [0, 1]2 : b ≤ f 0(a)− ε}.
Then µC(Mε) = 0 and Mε is a µC-continuity set, so applying Portmanteau’s theorem

(see [2]) yields

lim
j→∞

µCnj (Mε) = 0.(4.11)

Assume now that there exists some δ > 0 such that KCnj
(x, [0, y]) ≥ δ > 0 would hold for

infinitely many j ∈ N and denote the corresponding subsequence by (Cnjl )l∈N. It follows

from eq. (4.4) that y ≥ f 0
njl

(x) holds for every l ∈ N. Set tnjl := Cnjl (x, y) for every l ∈ N
and let l∗ denote the smallest index fulfilling that tnjl < x holds for all l ≥ l∗. Using the

fact that for every Archimedean copula A with generator ψ and for every t ∈ [0, 1) the
mapping

x 7→ KA(x, [0, f t(x)]) =
D+ψ(x)

D+ψ(t)
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Figure 2. The µC-null set Mε, the level curves f
tnjl
njl

, f 0
njl
, f 0 considered in

the proof of Lemma 4.8 and a zoomed-in illustration of ∆, where β = 1−y
x−tnjl∗

.

is decreasing in x it follows that for every l ∈ N we have

KCnjl
(u, [0, f

tnjl
njl

(u)]) ≥ KCnjl
(x, [0, f

tnjl
njl

(x)︸ ︷︷ ︸
=y

]) ≥ δ > 0

for every u ∈ (0, x]. The proof idea now is to use this monotonicity in combination with
convexity of the level curves (see [30]) to construct a contradiction to eq. (4.11): In fact,

convexity implies that the graph of each f
tnjl
njl

restricted to [tnjl∗ , x] lies below the straight

line connecting the points (x, y) and (tnjl∗ , 1) (again see Figure 2). Hence, defining ∆ > 0
by

∆ =
ε

1−y
x−tnjl∗

= ε
x− tnjl∗
1− y

(4.12)

it follows that for every u ∈ [x−∆, x] we have (u, f
tnjl
njl

(u)) ∈Mε. As direct consequence
it follows that

µCnjl
(Mε) ≥

∫
[x−∆,x]

KCnjl
(u, [0, f

tnjl
njl

(u)]) dλ(u) ≥ δ ·∆ > 0

holds for every l > l∗ which contradicts eq. (4.11). Altogether in case (b) & (c) we have
also shown now that limj→∞KCnj

(x, [0, y]) = 0 = KC(x, [0, y]) holds.

Taking (a) and (b) & (c) together we have proved that for each convergent subsequence
(ϕnj(0))j∈N of (ϕn(0))n∈N we have

lim
j→∞

KCnj
(x, [0, y]) = 0.

The result now follows from Lemma 4.7. �
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Considering that weak conditional convergence of the copulas implies convergence in
D1 the proof of this section’s main result Theorem 4.2 is complete. In Section 6 we will
use the following interesting consequence:

Corollary 4.9. Let C,C1, C2, . . . be Archimedean copulas with generators ϕ, ϕ1, ϕ2, . . .,
respectively and suppose that (ϕn)n∈N converges to ϕ on (0, 1]. Then the following identi-
ties holds:

(4.13) lim
n→∞

ζ1(Cn) = ζ1(C), lim
n→∞

r(Cn) = r(C)

In other words: Within Car both ζ1 and r are continuous w.r.t. pointwise convergence of
the generators on (0, 1].

We conclude this section by recalling the fact that the class of Archimedean copulas is
not closed w.r.t. uniform convergence, i.e., the limit of a sequence of Archimedean copulas
may fail to be Archimedean, see [4] (however, we necessarily have associativity). As easily
verified, the same is true if we consider weak conditional convergence or convergence w.r.t.
D1.

5. Extreme Value copulas

We are now going to prove a result similar to Theorem 4.2 for bivariate Extreme Value
copulas. Remember that C ∈ C is called bivariate Extreme Value copula if one of the
following three equivalent conditions is fulfilled (see [8, 10, 18, 31]):

(a) There is a copula B ∈ C such that for all x, y ∈ [0, 1] we have

C(x, y) = lim
n→∞

Bn(x
1
n , y

1
n ).(5.1)

(b) C(x, y) = Cn(x
1
n , y

1
n ) holds for all n ∈ N and all x, y ∈ [0, 1].

(c) There exists a convex map A : [0, 1] → [0, 1] satisfying A(0) = A(1) = 1 and
max(1−x, x) ≤ A(x) ≤ 1 for all x ∈ [0, 1] such that for all x, y ∈ (0, 1) the copula
C can be expressed in terms of A as

C(x, y) = CA(x, y) := (xy)A
(

ln(x)
ln(xy)

)
.(5.2)

In the following we will let Cev denote the class of all bivariate Extreme Value copulas, A
the family of all Pickands dependence functions, i.e., the family of all functions A fulfilling
assertion (c). Using either max-stability or Arzela-Ascoli theorem [34] it is straightforward
to verify that Cev is a compact subset of (C, d∞). Furthermore, letting ‖ · ‖∞ denote the
uniform norm on A, obviously the mapping Φ : (A, ‖ · ‖∞) → (Cev, d∞), defined by
Φ(A) = CA, is continuous and it is straightforward to verify that a sequence of Extreme
Value copulas (CAn)n∈N converges pointwise (hence uniformly) to an Extreme Value copula
CA if, and only if (An)n∈N converges uniformly to A.

Following [38] we will let D+A denote the right-hand derivative of the Pickands de-
pendence function A on [0, 1) and D−A the left-hand derivative on (0, 1]. Furthermore,
convexity implies that D−A(x) = D+A(x) holds for all but at most countably infinitely
many x ∈ (0, 1). In the sequel we will let Cont(D+A) denote the set of all continuity
points of D+A in (0, 1). Setting D+A(1) := D−A(1) we can view D+A as a function on
the whole unit interval that attains values in [−1, 1]. Furthermore D+A : [0, 1]→ [−1, 1]
is a non-decreasing, right-continuous function and it is straightforward to verify that A
can be identified with DA, defined by

DA =

{
f : [0, 1]→ [−1, 1] : f non-decreasing, right-continuous,

∫
[0,1]

f dλ = 0

}
,
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in the sense that for every A ∈ A we have D+A ∈ DA and, given f ∈ DA setting
A(x) := 1 +

∫
[0,x]

fdλ yields A ∈ A as well as D+A = f on [0, 1) (see [38]). For more

information on Pickands dependence functions and the approach via right-hand derivatives
we refer to [3, 16].

Returning to weak conditional convergence first notice that according to [38]

KC(x, [0, y]) =


1 if x ∈ {0, 1}
C(x, y)

[
D+A

( log(x)
log(xy)

) log(y)
x log(xy)

+ 1
x
A
( log(x)

log(xy)

)]
if x, y ∈ (0, 1)

y if x ∈ (0, 1), y ∈ {0, 1}

(5.3)

is a Markov kernel of the Extreme Value copula C with Pickands dependence function A.
We now state the main result of this section saying that in Cev pointwise convergence

and weak conditional convergence are equivalent:

Theorem 5.1. Let C,C1, C2, . . . be Extreme Value copulas with Pickands dependence
functions A,A1, A2, . . ., respectively. Then the following assertions are equivalent:

(a) lim
n→∞

Cn(x, y) = C(x, y) for all x, y ∈ [0, 1],

(b) lim
n→∞

An(x) = A(x) for all x ∈ [0, 1],

(c) lim
n→∞

D+An(x) = D+A(x) for all x ∈ Cont(D+A),

(d) lim
n→∞

D1(Cn, C) = 0,

(e) Cn
wcc−−→ C for n→∞.

Remark 5.2. Since for every Extreme Value copula CA its transpose CAt := (CA)t is an
Extreme Value copula with Pickands dependence function At given by At(x) = A(1− x)
for every x ∈ [0, 1] it follows that in the class of bivariate Extreme Value copulas the

properties Cn
wcc−−→ C and Ct

n
wcc−−→ Ct are equivalent. As a consequence of Theorem 5.1

(and in contrast to Remark 3.5) weak conditional convergence and ∂-convergence are
therefore equivalent in Cev.

Theorem 5.1 is a direct consequence of the following analogue of Lemma 4.6 and Lemma
4.8 (notice that the result implies weak conditional convergence for ANY choice of the
Markov kernels):

Lemma 5.3. Let C,C1, C2, . . . be bivariate Extreme Value copulas with Pickands depen-
dence functions A,A1, A2, . . ., respectively. Suppose that (Cn)n∈N converges pointwise to
C and choose the corresponding kernels according to (5.3). Then for every x ∈ (0, 1) there
exists a set Ux ⊂ [0, 1] that is dense in [0, 1] such that

lim
n→∞

KCn(x, [0, y]) = KC(x, [0, y])(5.4)

holds for every y ∈ Ux.

Proof. If (Cn)n∈N converges pointwise to C then, as mentioned before, it follows that
limn→∞ ‖An−A‖∞ = 0 holds. Thus (as in the case of Archimedean generators) convexity
yields

lim
n→∞

D+An(x) = D+A(x)

for every x ∈ Cont(D+A). Defining hx : (0, 1)→ (0, 1) for every x ∈ (0, 1) by

hx(y) =
log(x)

log(xy)
(5.5)
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yields a strictly increasing homeomorphism of (0, 1). Since (0, 1) \Cont(D+A) is at most
countably infinite h−1

x ((0, 1) \ Cont(D+A)) is as well and

λ
(
h−1
x (Cont(D+A))

)
= 1

follows. Being a set of full measure Ux := h−1
x (Cont(D+A)) is dense in [0, 1] and the result

follows. �

Altogether we have proved Theorem 5.1 which, in turn, has the following corollary:

Corollary 5.4. Let C,C1, C2, . . . be Extreme Value copulas with Pickands dependence
functions A,A1, A2, . . ., respectively and suppose that (An)n∈N converges to A on [0, 1].
Then the following identities holds:

(5.6) lim
n→∞

ζ1(Cn) = ζ1(C), lim
n→∞

r(Cn) = r(C)

In other words: Within Cev both ζ1 and r are continuous w.r.t. pointwise convergence of
the Pickands dependence functions.

We conclude this section with the following remark:

Remark 5.5. Suppose that H,H1, H2, . . . are the continuous bivariate distribution func-
tions of the pairs (X, Y ), (X1, Y1), (X2, Y2), . . ., with corresponding marginal distribution
functions FX , FX1 , FX2 , . . . and GY , GY1 , GY2 , . . . and corresponding copulas C,C1, C2, . . ..

Defining Hn
wcc−−→ H analogously to Definition 3.1 (notice that in this case λ is replaced by

PX) it is straightforward to verify that Hn
wcc−−→ H implies Cn

wcc−−→ C but not necessarily
vice versa. In the case that all C,C1, C2, . . . are Extreme Value copulas and the Pickands
function A of the limit copula C is twice differentiable, however, the reverse implica-
tion also holds. In the class Car the two concepts are equivalent too if, for instance, all
generators are 3-monotone.

6. Consequences for the estimation of Archimedean and Extreme Value
copulas

6.1. Extreme Value copulas. Suppose that CA is an Extreme Value copula with Pickands
function A and suppose that (X1, Y1), (X2, Y2), . . . is a random sample from (X, Y ) ∼ CA.

Letting Ân denote the CFG estimator according to [3, 15] (for an estimator in the multi-
variate setting see [19]) it can be shown that if A is twice continuously differentiable then

the corresponding process
√
n(Ân − A) (in the space of C([0, 1], ‖ · ‖∞) of all continuous

functions on the unit interval) has a weak limit, and that, for suitable weight functions,

(Ân)n∈N is uniformly, strongly consistent (see [3, Proposition 4.1]). Although the estima-

tor Ân may fail to be convex in general, following an idea from [15] it can be used to

construct a convex estimator Â∗n given by

Â∗n := greatest convex minorant of max{min{Ân, 1}, id, 1− id}

where id denotes the identity function on [0, 1]. Â∗n is a Pickands dependence function

(see [15, Section 3.3]) and the estimator Â∗n is uniformly, strongly consistent (the latter
follows from [28]). Hence Theorem 5.1 directly yields weak conditional convergence of the
sequence of corresponding Extreme Value copulas (CÂ∗

n
)n∈N to CA Moreover, according

to Corollary 5.4

lim
n→∞

|ζ1(CÂ∗
n
)− ζ1(CA)| = 0
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holds and the same is true for the dependence measure r studied in [9], i.e., for estimating
ζ1(CA) it suffices to have a good estimator of the Pickands dependence function A (we
refer to [21] for more details concerning the estimation of ζ1(X, Y )).

Example 6.1. Consider the Galambos copula CA with parameter θ = 3, i.e., the Extreme
Value copula whose Pickands dependence function is given by A(x) = 1 − (x−3 + (1 −
x)−3)−1/3. Figure 3 depicts a sample (and corresponding histograms) for the case n =
10000.
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Figure 3. Sample of size n = 10000 from the Galambos copula with
parameter θ = 3 as considered in Example 6.1 (lower left panel); two-
dimensional histogram (upper right panel) and marginal histograms (upper
left and lower right panel).

Using the R-package ‘copula’ we calculate the estimator Â∗n of A as described above.
Figure 4 depicts the obtained generators together with the true Pickands function A. For
the dependence measure ζ1 (again using the R-package ‘qad’) we obtained the following
values: ζ1(CÂ∗

500
) = 0.7746, ζ1(CÂ∗

10000
) = 0.7594, ζ1(CA) = 0.7513.

We now focus on the estimation of ζ2 := r introduced in [9], denote the estimator of r
developed by Chatterjee in [5] by r̂n (for an implementation see the R-package ‘XICOR’
[6]) and proceed with a small simulation study comparing the afore-mentioned plugin
approach (using the Extreme Value information) with r̂n (not taking into account the Ex-
treme Value information). In other words: Given a random sample (X1, Y1), (X2, Y2), . . .
from (X, Y ) ∼ CA ∈ Cev we calculate r̂n and r(CÂ∗

n
) = 6 ·D2

2(CÂ∗
n
,Π) for different sample

sizes a total of R = 5000 times. Doing so we consider two cases of CA: the Galambos cop-
ula with parameter θ = 3 and the Extreme Value copula with piecewise linear Pickands
dependence function A given by

A(x) = 1[0, 1
4

](x) · (1− x) + 1( 1
4
, 7
10

]

(
−1

9
(x− 7)

)
+ 1( 7

10
,1](x) · x.(6.1)
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Figure 4. The Pickands dependence function A (black) as well as the

estimate Â∗n for n = 500 and n = 10000 as considered in Example 6.1.
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Figure 5. Boxplots of the obtained value of r̂n and r(CÂ∗
n
) based on sam-

ples from the Galambos copula with parameter θ = 3.
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Figure 6. Boxplots of the obtained value of r̂n and r(CÂ∗
n
) based on sam-

ples from the copula with Pickands dependence function A according to eq.
(6.1).

Not surprisingly, Figure 5 and Figure 6 show that for small to moderate sample sizes
the plugin estimator r(CÂ∗

n
) (using the Extreme Value information) yields better results

than r̂n, for large sample sizes both estimators perform similarly well.

6.2. Archimedean copulas. Turning to the Archimedean setting suppose now that C is
an Archimedean copula with generator ϕ and let (X1, Y1), (X2, Y2), . . . be a random sample

from (X, Y ) ∼ C. We will let F̂Kendall
n denote the estimator of the Kendall distribution

function FKendall of C called Kn,2 in [13, Lemma 1]. According to [13] (also see [1, 14]),

F̂Kendall
n itself is a Kendall distribution function of an Archimedean copula and under

mild regularity conditions the so-called empirical Kendall process
√
n(F̂Kendall

n −FKendall)

converges weakly to a centered Gaussian process. If F̂Kendall
n converges weakly to FKendall

(to the best of authors’ knowledge no sufficient conditions for this property to hold are
known in the literature) then, according to Theorem 4.2, we automatically have weak
conditional convergence of the sequence of corresponding Archimedean copulas (Cϕ̂n)n∈N
to C, whereby ϕ̂n denotes the (normalized) generator obtained from F̂Kendall

n . Moreover,
according to Corollary 4.9

lim
n→∞

|ζ1(Cϕ̂n)− ζ1(C)| = 0

holds and the same is true for the dependence measure studied in [9], i.e., for estimating
ζ1(C) it suffices to have a good estimator of the Kendall distribution function FKendall.
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Example 6.2. We illustrate the afore-mentioned properties with simulations in R and
consider the (normalized) generator ϕ(x) = (− log(1

2
))−3·(− log(x))3 of the Gumbel copula

Cϕ with parameter θ = 3. Figure 7 depicts a sample of size n = 10000 from this copula as
well as a two-dimensional and the corresponding marginal histograms. For both samples
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Figure 7. Sample of size n = 10000 from the Gumbel copula with param-
eter θ = 3 as in Example 6.2 (lower left panel); two-dimensional histogram
(upper right panel) and marginal histograms (upper left and lower right
panel).

we use the R-package ‘copula’ (see [20]) to estimate the empirical Kendall distribution

function F̂Kendall
n as described in [13]. Figure 8 (left panel) depicts the real as well as

the estimated Kendall distribution function for the sample sizes n = 500 and n = 10000,
respectively. Based on F̂Kendall

n we derive the estimated (normalized) generator ϕ̂n by
(again see Figure 8)

ϕ̂n(x) = exp

(
sign

(
x− 1

2

)∫ max( 1
2
,x)

min( 1
2
,x)

1

t− F̂Kendall
n (t)

dt

)
.

Given ϕ̂n we finally calculate the estimated Archimedean copula Cϕ̂n and calculate its
Markov kernel KCϕ̂n

. For the dependence measure ζ1 using the R-package ‘qad’ ([17]) we
obtained the following values: ζ1(Cϕ̂500) = 0.7117, ζ1(Cϕ̂10000) = 0.7041, ζ1(Cϕ) = 0.6910.

As in the Extreme Value setting we perform a small simulation study comparing the
performance of the plugin estimator with the estimator r̂n of the coefficient of correlation
r (ignoring the Archimedean information). Generating samples of the Gumbel copula
with parameter θ = 3, calculating r̂n as well as r(Cϕ̂n) = 6 ·D2(Cϕ̂n ,Π) for these samples
and repeating this procedure R = 5000 times yielded the results depicted in Figure 9. Not
surprisingly, for small to moderate sample sizes the plugin estimator r(Cϕ̂n) outperforms
the general estimator r̂n, for large sample sizes both estimators perform comparably well.
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Figure 8. Kendall distribution function of a Gumbel copula with param-
eter θ = 3 (black) and its estimate F̂Kendall

n for n = 500 and n = 10000 as
considered in Example 6.2 (left panel); (normalized) generator (black) and
its estimates ϕ̂n for n = 500 and n = 10000 as considered in Example 6.2
(right panel).
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