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Abstract

In this paper we focus on copulas underlying maximal non-exchangeable pairs (X,Y ) of contin-
uous random variables X,Y either in the sense of the uniform metric d∞ or the conditioning-
based metrics Dp, and analyze their possible extent of dependence quantified by the recently
introduced dependence measures ζ1 and ξ. Considering maximal d∞-asymmetry we obtain
ζ1 ∈

[
5
6
, 1
]
and ξ ∈

[
2
3
, 1
]
, in the case of maximal D1-asymmetry we get ζ1 ∈

[
3
4
, 1
]
and

ξ ∈
(
1
2
, 1
]
, implying that maximal asymmetry implies a very high degree of dependence in

both cases. Furthermore, we study various topological properties of the family of copulas with
maximal D1-asymmetry and derive some surprising properties for maximal Dp-asymmetric
copulas.
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1 Introduction

Two random variables X and Y with joint distribution function H are called exchangeable if
and only if the pairs (X,Y ) and (Y,X) have the same distribution, or equivalently, if H(x, y) =
H(y, x) holds for all x and y. The study of exchangeable random variables has exhibited a lot
of interest in statistics (see, for instance, [8] and the references therein). In case X and Y are
identically distributed and have distribution function F , then (X,Y ) is exchangeable if and only
if the underlying copula A coincides with its transpose At (defined as At(x, y) = A(y, x)). Hence,
in what follows we consider continuous and identically distributed random variables X and Y .
While the class of continuous exchangeable random variables X and Y is uniquely characterized
by the class of symmetric copulas, the exact opposite, i.e. maximal non-exchangeability of random
variables, strongly depends on the choice of measure quantifying the degree of non-exchangeability.
One natural measure of non-exchangeability was studied by Nelsen [21] as well as by Klement and
Mesiar [15], who independently showed that

d∞(A,At) := sup
x,y∈[0,1]

|A(x, y) −A(y, x)| ≤ 1

3

holds for every A ∈ C and introduced the d∞-based measure δ : C → [0, 1] via δ(A) := 3d∞(A,At).
Moreover, they characterized all copulas A ∈ C with maximal d∞-asymmetry and showed that
these copulas always model slightly negatively correlated random variables X and Y in the sense
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of Spearman’s ρ. More precisely, δ(A) = 1 implies ρ(A) ∈
[
− 5

9 ,−
1
3

]
. Similar results also hold for

different measures of concordance (see [17]).
Considering other metrics on the space of copulas yields alternative measures of non-exchangeability

([13, 25]): In [13] the stronger conditioning-based metric D1 introduced in [27] was studied and
the authors proved (among other things) that every copula A ∈ C with maximal D1-asymmetry
(i.e., D1(A,At) = 1

2 ) is not maximal asymmetric with respect to d∞ and that no maximal d∞-
asymmetric copula is maximal asymmetric with respect to D1.

Building upon the results in [13] we here further investigate the family of copulas with maximal
D1-asymmetry, derive additional novel characterizations in terms of the Markov-product of copulas
(see [3]), and study various topological properties; inter alia we prove that the family of mutually
completely dependent copulas with maximal D1-asymmetry is dense in the set of all copulas with
maximal D1-asymmetry. Furthermore, we extend the concept of maximal D1-asymmetry to the
general Dp-metrics (p ∈ [1,∞)), defined by

Dp(A,B) :=

(∫
[0,1]

∫
[0,1]

|KA(x, [0, y]) −KB(x, [0, y])|p dλ(x)dλ(y)

) 1
p

, (1)

where KA(·, ·),KB(·, ·) denote the Markov kernels (regular conditional distributions) of A,B ∈ C,
respectively. Although all Dp-metrics induce the same topology, we show the surprising result
that maximal D1-asymmetry is not equivalent to maximal Dp-asymmetry for p ∈ (1,∞). In fact,
copulas with maximal Dp-asymmetry with p ∈ (1,∞) are always mutually completely dependent
and maximal asymmetric w.r.t. D1.

Moreover, we tackle the question on the degree of dependence of copulas exhibiting maxi-
mal asymmetry with respect to d∞ or Dp for every p ∈ [1,∞]. Since measures of concordance
are generally not suitable for quantifying dependence (see, for instance, [11]) we consider the de-
pendence measures ζ1 introduced in [27] and further studied in [11, 10], as well as ξ, defined in
[4] and reinvestigated in [2]. Both measures have recently attracted a lot of interest (see, e.g.,
[1, 10, 11, 14, 24, 26]) since, in contrast to standard methods like Spearman’s ρ or Kendall’s τ ,
these measures are 1 if and only if Y is a function of X and 0 if and only if X and Y are indepen-
dent; moreover, they can be estimated consistently without underlying smoothness assumptions.
We prove that when considering maximal d∞-asymmetry ζ1 ∈

[
5
6 , 1
]

and ξ ∈
[
2
3 , 1
]

hold, and in

the case of maximal D1-asymmetry ζ1 ∈
[
3
4 , 1
]

and ξ ∈
(
1
2 , 1
]

follows. In other words, maximal
non-exchangeable random variables (in the sense of d∞ or Dp) always implies a high degree of
dependence w.r.t. ζ1 and ξ.

The rest of this paper is organized as follows: Section 2 gathers preliminaries and notations
that will be used throughout the paper. In Section 3 we study possible values of ζ1 and ξ for
maximal d∞-asymmetric copulas and discuss an example illustrating differences of ζ1 and ξ in the
context of ordinal sums. In Section 4 we revisit copulas with maximal D1-asymmetry and derive
several topological properties. Extensions on maximal Dp-asymmetry for p ∈ [1,∞] and some
interrelations are established in Section 5. Consequences on the dependence measures ζ1 and ξ
conclude the paper (Section 6). Various examples and graphics illustrate both the obtained results
and the ideas underlying the proofs.

2 Notation & preliminaries

For every metric space (Ω, d) the Borel σ-field in Ω will be denoted by B(Ω), λ will denote the
Lebesgue measure on B(R). T will denote the class of all measurable λ-preserving transformations
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on [0, 1], i.e.,

T = {T : [0, 1] → [0, 1] measurable with λ(T−1(E)) = λ(E) ∀E ∈ B([0, 1])},

and Tb the subclass of all bijective T ∈ T . Throughout the whole paper C will denote the family
of all two-dimensional copulas, P the family of all doubly-stochastic measures (for background on
copulas and doubly stochastic measures we refer to [6, 22] and the references therein). Furthermore,
M denotes the upper Fréchet Hoeffding bound, Π the product copula and W the lower Fréchet
Hoeffding bound. Additionally, the completely dependent copula induced by a measure-preserving
transformation h ∈ T will be denoted by Ch (see [27], Definition 9). The family of all completely
dependent copulas will be denoted by Ccd, the family of all mutually completely dependent copulas
by Cmcd := {Ch ∈ Ccd : h ∈ Tb}. For every copula C ∈ C the corresponding doubly stochastic
measure will be denoted by µC . As usual, d∞ denotes the uniform metric on C, i.e.,

d∞(A,B) := max
(x,y)∈[0,1]2

|A(x, y) −B(x, y)|

for every A,B ∈ C. It is well known that (C, d∞) is a compact metric space (see [6]).
In what follows Markov kernels will play an important role. A mapping K : R× B(R) → [0, 1]

is called a Markov kernel from (R,B(R)) to (R,B(R)) if the mapping x 7→ K(x,B) is measurable
for every fixed B ∈ B(R) and the mapping B 7→ K(x,B) is a probability measure for every fixed
x ∈ R. A Markov kernel K : R × B(R) → [0, 1] is called regular conditional distribution of a
(real-valued) random variable Y given (another random variable) X if for every B ∈ B(R)

K(X(ω), B) = E(1B ◦ Y |X)(ω)

holds P-a.s. It is well known that a regular conditional distribution of Y given X exists and is
unique PX -almost sure (where PX denotes the distribution of X, i.e., the push-forward of P via
X). For every A ∈ C (a version of) the corresponding regular conditional distribution (i.e., the
regular conditional distribution of Y given X in the case that (X,Y ) ∼ A) will be denoted by
KA(·, ·). Note that for every A ∈ C and Borel sets E,F ∈ B([0, 1]) we have∫

E

KA(x, F )dλ(x) = µA(E × F ) and

∫
[0,1]

KA(x, F )dλ(x) = λ(F ). (2)

For more details and properties of conditional expectations and regular conditional distributions we
refer to [12, 16]. Expressing copulas in terms of their corresponding regular conditional distribution
yields metrics stronger than d∞ (see [27]) and defined by

Dp(A,B) :=

(∫
[0,1]

∫
[0,1]

|KA(x, [0, y]) −KB(x, [0, y])|p dλ(x)dλ(y)

) 1
p

, (3)

D∞(A,B) := sup
y∈[0,1]

∫
[0,1]

|KA(x, [0, y]) −KB(x, [0, y])| dλ(x). (4)

To simplify notation we will also write ΦA,B(y) :=
∫
[0,1]

|KA(x, [0, y])−KB(x, [0, y])|dλ(x). We will

also work with D∂ , defined by

D∂(A,B) := D1(A,B) + D1(At, Bt),

whereby At denotes the transpose of A ∈ C. The metric D∂ can be seen as metrization of the
so-called ∂-convergence, introduced and studied in [18, 19]. In [27] it is shown that (C, D1) is a
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complete and separable metric space with diameter 1/2 and that the topology induced by D1 is
strictly finer than the one induced by d∞. For further background on D1 and D∂ as well as for
possible extensions to the multivariate setting we refer to [6, 7, 10, 27] and the references therein.
The D1-based dependence measure ζ1 (introduced in [27] and further investigated in [10, 11]) is
defined as

ζ1(X,Y ) := ζ1(A) := 3D1(A,Π),

whereby (X,Y ) has copula A ∈ C. In the sequel we will also consider the dependence measure ξ
(first introduced in [4] and reinvestigated in [2]) defined as

ξ(X,Y ) :=

∫
V ar(E(1{Y≥t}|X))dµ(t)∫

V ar(1{Y≥t})dµ(t)
,

where µ is the law of Y . In the copula setting, it is straightforward to verify that ξ can be expressed
in terms of D2 and that ξ(X,Y ) := ξ(A) = 6D2

2(A,Π) holds. Both dependence measures attain
values in [0, 1] and are 0 if and only if A = Π, and 1 if and only if A is completely dependent.
Letting Sh(A) denote the generalized shuffle of A w.r.t. the first coordinate, implicitly defined via
the corresponding doubly stochastic measure µA by

µSh(A)(E × F ) := µA(h−1(E) × F ),

for all E,F ∈ B([0, 1]) (see, e.g., [5, 9]), the following simple result holds:

Lemma 2.1. Let h ∈ Tb be a λ-preserving bijection. Then ζ1(Sh(A)) = ζ1(A) and ξ(Sh(A)) = ξ(A)
holds for every A ∈ C.

Proof. According to Lemma 3.1 in [9] for h ∈ Tb the Markov kernel of Sh(A) can be expressed as
KSh(A)(x, [0, y]) = KA(h−1(x), [0, y]) and for p ∈ [1,∞) we get

Dp
p(Sh(A),Π) =

∫
[0,1]

∫
[0,1]

|KSh(A)(x, [0, y]) − y|pdλ(x)dλ(y)

=

∫
[0,1]

∫
[0,1]

|KA(h−1(x), [0, y]) − y|pdλ(x)dλ(y)

=

∫
[0,1]

∫
[0,1]

|KA(h−1(x), [0, y]) − y|pdλh(x)dλ(y)

=

∫
[0,1]

∫
[0,1]

|KA(h−1(h(x)), [0, y]) − y|pdλ(x)dλ(y) = Dp
p(A,Π),

which proves the assertion.

In the sequel we will also work with rearrangements [23] (see [26] for an elegant application of
rearrangements in the copula context). We call f∗ : [0, 1] → R the decreasing rearrangement of
a Borel measurable function f : [0, 1] → R if it fulfills f∗(t) := inf{x ∈ R : λ({z ∈ [0, 1] : f(z) >
x}) ≤ t}. The stochastically increasing (SI)-rearrangement A↑ of A is then defined as

A↑(x, y) :=

∫
[0,x]

KA(t, [0, y])∗ dλ(t),

whereby the rearrangement is applied on the first coordinate of KA(·, ·), i.e., for every fixed y ∈
[0, 1] the rearranged Markov kernel is defined via KA(t, [0, y])∗ := inf{x ∈ [0, 1] : λ({z ∈ [0, 1] :
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KA(z, [0, y]) > x}) ≤ t}. In [26] it was shown that A↑ is a stochastically increasing copula and
both dependence measures ζ1 and ξ are invariant w.r.t. to the rearrangement, i.e., they fulfil
ζ1(A↑) = ζ1(A) and ξ(A↑) = ξ(A), respectively. Recall that a copula A is called stochastically
increasing (SI) if there exists a Borel set Λ ⊆ [0, 1] with λ(Λ) = 1 such that for any y ∈ [0, 1]
the mapping x 7→ KA(x, [0, y]) is non-increasing on Λ. The family of all stochastically increasing
copulas will be denoted by C↑. For further information we refer to [22] and the references therein.

Given A,B ∈ C a new copula denoted by A∗B can be constructed via the so-called star/Markov
product A ∗B (see [3]) by

(A ∗B)(x, y) :=

∫
[0,1]

∂2A(x, t)∂1B(t, y) dλ(t), (5)

where ∂1A(x, y) denotes the partial derivative of A with respect to the first coordinate. The star
product A∗B is always a copula, i.e., no smoothness assumptions on A,B are required. Translating
to the Markov kernel setting the star product corresponds to the well known composition of Markov
kernels and the following lemma holds:

Lemma 2.2 ([29]). Suppose that A,B ∈ C and let KA,KB denote the Markov kernels of A and
B, respectively. Then the Markov kernel KA ◦KB, defined by

(KA ◦KB)(x, F ) :=

∫
[0,1]

KB(y, F )KA(x, dy) (6)

is a regular conditional distribution of A ∗B.

3 Maximal d∞-asymmetric copulas and their extent of de-
pendence with respect to ζ1 and ξ

Since ordinal sums will play an important role in what follows, we briefly recall their definition.
We follow [6] and let I ⊆ N be some finite index set, ((ai, bi))i∈I be a family of non-overlapping
intervals with 0 ≤ ai < bi ≤ 1 for each i ∈ I such that

⋃
i∈I [ai, bi] = [0, 1] holds. Furthermore,

(Ci)i∈I denotes a family of bivariate copulas. Then the copula C defined by

C(x, y) =

{
ai + (bi − ai)Ci

(
x−ai

bi−ai
, y−ai

bi−ai

)
, (x, y) ∈ (ai, bi)

2

min{x, y} elsewhere

is an ordinal sum, and we write C = (⟨ai, bi, Ci⟩)i∈I . The following lemma gathers some useful
formulas for D1 and D2

2 which will be used in the sequel.

Lemma 3.1. Let C = (⟨ai, bi, Ci⟩)i∈I be an ordinal sum with I := {1, . . . , n} for some n ∈ N.
Then

D2
2(C,Π) =

n∑
i=1

(
(bi − ai)

2D2
2(Ci,Π)

)
+ f(a1, . . . , an, b1, . . . , bn),

D1(C,Π) =

n∑
i=1

(
(bi − ai)

2

∫
[0,1]

∫
[0,1]

∣∣KCi
(x, [0, y]) − (ai + (bi − ai)y)

∣∣dλ(x)dλ(y)

)
+ g(a1, . . . , an, b1, . . . , bn),

whereby f and g are given by f(a1, . . . , an, b1, . . . , bn) :=
∑n

i=1

(
(bi−ai)

2

3 + (bi − ai)(1 − bi)
)
− 1

3

and g(a1, . . . , an, b1, . . . , bn) :=
∑n

i=1(bi − ai)
(

1
2 − bi +

b2i
2 +

a2
i

2

)
, respectively.
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Proof. The definition of D2
2 yields

D2
2(C,Π) =

∫
[0,1]

∫
[0,1]

(KC(x, [0, y]) −KΠ(x, [0, y]))
2
dλ(x)dλ(y)

=

∫
[0,1]

∫
[0,1]

KC(x, [0, y])2dλ(x)dλ(y)

− 2

∫
[0,1]

y

∫
[0,1]

KC(x, [0, y])dλ(x)dλ(y) +

∫
[0,1]

∫
[0,1]

y2dλ(x)dλ(y)

=

∫
[0,1]

∫
[0,1]

KC(x, [0, y])2dλ(x)dλ(y) − 1

3

for every C ∈ C. Using the fact that (without loss of generality) the Markov kernel KC(x, [0, y]) of
C is 0 below the squares (ai, bi)

2 and 1 above (ai, bi)
2, and applying change of coordinates yields

D2
2(C,Π) +

1

3
=

n∑
i=1

(∫
(ai,bi)

∫
(ai,bi)

KC(x, [0, y])2dλ(x)dλ(y) +

∫
(bi,1)

∫
(ai,bi)

1dλ(x)dλ(y)

)

=

n∑
i=1

(
(bi − ai)

2

∫
[0,1]

∫
[0,1]

KCi
(x, [0, y])2dλ(x)dλ(y) + (bi − ai)(1 − bi)

)

=

n∑
i=1

(
(bi − ai)

2

(
D2

2(Ci,Π) +
1

3

)
+ (bi − ai)(1 − bi)

)
.

Analogously we get

D1(C,Π) =

n∑
i=1

∫
[0,1]

∫
(ai,bi)

|KC(x, [0, y] − y|dλ(x)dλ(y)

=

n∑
i=1

∫
(ai,bi)

∫
(ai,bi)

∣∣∣∣KCi

(
x− ai
bi − ai

,

[
0,

y − ai
bi − ai

])
− y

∣∣∣∣ dλ(x)dλ(y)

+

n∑
i=1

∫
(bi,1)

∫
(ai,bi)

(1 − y) dλ(x)dλ(y) +

n∑
i=1

∫
(0,ai)

∫
(ai,bi)

y dλ(x)dλ(y)

=

n∑
i=1

(
(bi − ai)

2

∫
[0,1]

∫
[0,1]

∣∣KCi
(x, [0, y]) − (ai + (bi − ai)y)

∣∣dλ(x)dλ(y)

)
+ g(a1, . . . , an, b1, . . . , bn),

with g(a1, . . . , an, b1, . . . , bn) as in the theorem.

As a direct consequence the dependence measure ξ of ordinal sums can easily be expressed in
terms of ξ(Ci):

Corollary 3.2. Let C = (⟨ai, bi, Ci⟩)i∈I be an ordinal sum with I := {1, . . . , n} for some n ∈ N.
Then

ξ(C) =

n∑
i=1

(bi − ai)
2ξ(Ci) + 6f(a1, . . . , an, b1, . . . , bn)

holds, where f is defined according to Lemma 3.1 and only depends on the partition.
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The following example shows that ordinal sums can be used to construct copulas attaining
every possible dependence value w.r.t. to ξ and ζ1.

Example 3.3. Consider Cs = (⟨ai, bi, Ci⟩)i∈{1,2}, whereby a1 := 0, a2 := s, b1 := s and b2 := 1 for

s ∈ [0, 1] and set C1 = Π as well as C2 = M . Figure 1 depicts the support of µCs
for different choices

of s ∈ [0, 1]. Using Corollary 3.2 we have ξ(Cs) = (1−s)2+6
(

s2

3 + s(1 − s) + (1−s)2

3 − 1
3

)
= 1−s2.

Therefore, the map φ : [0, 1] → [0, 1] defined by s 7→ ξ(Cs) is continuous and onto. The same holds
for ζ1(Cs) = 1 − s3.

0

1/4

2/4

3/4

1

0 1/4 2/4 3/4 1
0

1/4

2/4

3/4

1

0 1/4 2/4 3/4 1

Figure 1: Mass distribution of the doubly stochastic measure µCs
for s = 0.3 (left panel) and

s = 0.8 (right panel) considered in Example 3.3. For the dependence measures ξ and ζ1 we get
ξ(C0.3) = 0.91 and ξ(C0.8) = 0.36 as well as ζ1(C0.3) = 0.973 and ζ1(C0.8) = 0.488.

Before deriving some first results concerning the range of the dependence measures ξ(A) and
ζ1(A) for maximal d∞-asymmetric copulas A, we recall the characterizations of maximal d∞-
asymmetry derived in [21, 15]: d∞(A,At) is maximal if and only if A

(
2
3 ,

1
3

)
= 0 and A

(
1
3 ,

2
3

)
=

1
3 or At

(
2
3 ,

1
3

)
= 0 and At

(
1
3 ,

2
3

)
= 1

3 . Without loss of generality we may focus on the case

A
(
1
3 ,

2
3

)
= 1

3 and A
(
2
3 ,

1
3

)
= 0. Since A is doubly stochastic in this case we obviously have

µA([0, 1
3 ] × [ 13 ,

2
3 ]) = µA([ 13 ,

2
3 ] × [ 23 , 1]) = µA([ 23 , 1] × [0, 1

3 ]) = 1
3 . As a direct consequence we can

find copulas A1, A2, A3 ∈ C fulfilling

µA =
1

3
µf12
A1

+
1

3
µf23
A2

+
1

3
µf31
A3

, (7)

whereby the functions fij : [0, 1]2 →
[
i−1
3 , i

3

]
×
[
j−1
3 , j

3

]
are given by fij(x, y) =

(
x+i−1

3 , y+j−1
3

)
for each (i, j) ∈ {1, 2, 3}2 (and µ

fij
A denotes the push-forward of µA via fij).

Theorem 3.4. If A ∈ C has maximal d∞-asymmetry, i.e., if δ(A) = 3d∞(A,At) = 1 holds, then
ξ satisfies ξ(A) ∈

[
2
3 , 1
]
. Moreover, for every s ∈

[
2
3 , 1
]
there exists a copula A with δ(A) = 1

fulfilling ξ(A) = s.

Proof. We may assume that A
(
1
3 ,

2
3

)
= 1

3 and A
(
2
3 ,

1
3

)
= 0. Then there exist copulas A1, A2, A3 ∈
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C such that µA = 1
3µ

f12
A2

+ 1
3µ

f23
A3

+ 1
3µ

f31
A1

holds. Defining h : [0, 1] → [0, 1] by

h(x) =

{
1
3 + x if x ∈

[
0, 2

3

]
x− 2

3 if x ∈
(
2
3 , 1
]
,

we have h ∈ Tb and Sh(A) =
(〈

i−1
3 , i

3 , Ai

〉)
i∈{1,2,3}. Applying Lemma 2.1 and 3.2 we therefore

obtain

ξ(A) = ξ(Sh(A)) = 6f(a1, . . . , an, b1, . . . , bn) +

3∑
i=1

1

9
ξ(Ai) =

2

3
+

3∑
i=1

1

9
ξ(Ai) ≥

2

3
,

with equality if and only if Ai = Π for every i = 1, 2, 3.
Defining As by µAs := 1

3µ
f12
Cs

+ 1
3µ

f23
Cs

+ 1
3µ

f31
Cs

with Cs as in Example 3.3 yields

ξ(As) = ξ(Sh(As)) =
1

3
ξ(Cs) +

2

3
.

Considering ξ(Cs) = 1−s2 ∈ [0, 1] for s ∈ [0, 1] and using the same arguments as in Example 3.3 it
follows that for every s0 ∈

[
2
3 , 1
]

we find a copula A ∈ C with ξ(A) = s0 and 3d∞(A,At) = δ(A) =
1.

Since ζ1 and ξ are similar by construction, one might expect the analogous statements for ζ1.
Notice, however, that a different proof is needed since according to Lemma 3.1 the formulas for
D1 are more involved.

Theorem 3.5. If A ∈ C has maximal d∞-asymmetry, then ζ1 satisfies ζ1(A) ∈ [ 56 , 1]. Furthermore,
for every s ∈ [ 56 , 1] there exists a copula A with δ(A) = 1 fulfilling ζ1(A) = s.

Proof. Proceeding as in the proof of Theorem 3.4 we obtain Sh(A) =
(〈

i−1
3 , i

3 , Ai

〉)
i∈{1,2,3}. Con-

sidering the (SI)-rearrangement Sh(A)↑ of Sh(A) it is clear that Sh(A)↑ is an ordinal sum again and

can be expressed as Sh(A)↑ =
(〈

i−1
3 , i

3 , A
↑
i

〉)
i∈{1,2,3}

. Since every A↑
i is stochastically increasing

(SI) and hence fulfills A↑
i (x, y) ≥ Π↑(x, y) = Π(x, y) for every (x, y) ∈ [0, 1]2 and every i ∈ {1, 2, 3}

(see, e.g., [22][Section 5.2]), we obtain that

Sh(A)↑ ≥ CΠ :=

(〈
i− 1

3
,
i

3
,Π

〉)
i∈{1,2,3}

holds pointwise. Due to the fact that ζ1 is monotone w.r.t. the pointwise order on C↑ and ζ1 is
invariant w.r.t. to (SI)-rearrangements (see [26]), we get

ζ1(A) = ζ1(Sh(A)) = ζ1(Sh(A)↑) ≥ ζ1(CΠ) =
5

6
,

where the last equality follows from Lemma 3.1 (the detailed calculations are deferred to the
Appendix 6). To show the second assertion we can proceed analogously to the proof of Theorem
3.4 and use shrunk copies of the copula Cs defined in Example 3.3 (see Appendix 6).

While the minimum value of ξ for a copula A ∈ C with maximal d∞-asymmetry is attained if
and only if Ai = Π for every i = 1, 2, 3 in Eq. (7), ζ1 exhibits a different behaviour as demonstrated
in the following example:

8



Example 3.6. Let A1 ∈ C↑ be defined by

A1(x, y) = xy +
1

2
x(1 − x)y(1 − y).

Then a version of the corresponding Markov kernel of A1 is given by KA1
(x, [0, y]) = y + 1

2 (2x −
1)y(y − 1). Furthermore, we set A3 = A1 and A2 = Π and let A denote the ordinal sum given by
A :=

(〈
i−1
3 , i

3 , Ai

〉)
i∈{1,2,3} and CΠ be the ordinal sum given by CΠ :=

(〈
i−1
3 , i

3 ,Π
〉)

i∈{1,2,3} (see

Figure 2). By construction we have A ̸= CΠ, however, considering

0

1/3

2/3

1

0 1/3 2/3 1
0

1/3

2/3

1

0 1/3 2/3 1

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Density

Figure 2: Density of the stochastically increasing copulas CΠ (left panel) and A (right panel)
considered in Example 3.6. Although A(x, y) ≥ CΠ(x, y) holds for every (x, y) ∈ [0, 1]2 and there
exists some (x, y) with A(x, y) > CΠ(x, y) we have ζ1(A) = ζ1(CΠ). On the contrary, ξ fulfills
ξ(A) > ξ(CΠ).

∫
[0,1]

∫
[0,1]

1

2
(2x− 1)y(y − 1)dλ(x)dλ(y) = 0,

yields∫
[0,1]

∫
[0,1]

∣∣∣KΠ(x, [0, y]) − y

3

∣∣∣ dλ(x)dλ(y) =

∫
[0,1]

∫
[0,1]

2y

3
dλ(x)dλ(y)

=

∫
[0,1]

∫
[0,1]

(
2y

3
+

1

2
(2x− 1)y(y − 1)

)
dλ(x)dλ(y)

=

∫
[0,1]

∫
[0,1]

∣∣∣∣2y3 +
1

2
(2x− 1)y(y − 1)

∣∣∣∣ dλ(x)dλ(y)

=

∫
[0,1]

∫
[0,1]

∣∣∣KA1
(x, [0, y]) − y

3

∣∣∣ dλ(x)dλ(y)

and analogously we get∫
[0,1]

∫
[0,1]

∣∣∣∣KΠ(x, [0, y]) −
(

2

3
+

y

3

)∣∣∣∣ dλ(x)dλ(y) =

∫
[0,1]

∫
[0,1]

∣∣∣∣KA1
(x, [0, y]) −

(
2

3
+

y

3

)∣∣∣∣ dλ(x)dλ(y).

9



Applying Lemma 3.1 we obtain ζ1(A) = ζ1(CΠ) = 5
6 .

Remark 3.7. Considering the monotonicity of ζ1 with respect to the pointwise order on C↑ as
proved in [26], Example 3.6 shows that there exist copulas A,B ∈ C↑ with A ≤ B pointwise and
A(x, y) < B(x, y) for some (x, y) ∈ [0, 1]2 fulfilling ζ1(A) = ζ1(B).

4 Maximal D1-asymmetry of copulas revisited

In this section we complement characterizations of copulas with maximal D1-asymmetry going back
to [13] and derive some topological properties of subclasses. To be consistent with the notation in
[13], the family of copulas with maximal D1-asymmetry is denoted by

Cκ=1 :=
{
A ∈ C : κ(A) := 2D1(A,At) = 1

}
⊆ C,

the subclass of mutually completely dependent copulas is denoted by Cκ=1
mcd . We start with the

family of mutually completely dependent copulas and show closedness w.r.t. the metric D∂ .

Proposition 4.1. The set Cκ=1
mcd is closed in (C, D∂).

Proof. Let (Ahn
)n∈N be a sequence of mutually completely dependent copulas with D∂-limit A.

Since according to [27] the family of completely dependent copulas is closed w.r.t. D1 we obtain
A ∈ Ccd and At ∈ Ccd. Using [27, Lemma 10] there exist λ-preserving transformations g, g′ ∈ T
such that a version of the Markov kernel KA(·, ·) and KAt(·, ·) is given by KA(x,E) = 1E(g(x))
and KAt(x,E) = 1E(g′(x)), respectively. Furthermore, since a copula A is completely dependent
if and only if it is left-invertible w.r.t. the ∗-product (see [27]) we have M = At ∗ A. Applying
Lemma 2.2 therefore yields that g ◦ g′(x) = id(x) for λ-a.e. x ∈ [0, 1]. Using the fact that g is
surjective λ-almost everywhere, there exists a λ-preserving and bijective transformation h ∈ Tb
such that h = g holds λ-a.e., implying A = Ah ∈ Cmcd. It remains to show that D1(Ah, A

t
h) = 1

2 ,
which can be done as follows. Using [13][Theorem 3.5] and the triangle inequality we get

1

2
=

∫
[0,1]

∣∣hn − h−1
n

∣∣ dλ(x) ≤
∫
[0,1]

|hn − h| dλ(x) +

∫
[0,1]

∣∣h− h−1
∣∣ dλ(x) +

∫
[0,1]

∣∣h−1 − h−1
n

∣∣ dλ(x)

for every n ∈ N. Applying [27][Proposition 15 (ii)] yields

D1(Ah, A
t
h) =

∫
[0,1]

∣∣h(x) − h−1(x)
∣∣ dλ(x) ≥ 1

2
−
[
D1(Ahn

, Ah) + D1(At
hn

, At
h)
]

=
1

2
−D∂(Ahn

, Ah).

Together with the fact that the maximal distance can not exceed 1
2 it follows that D1(Ah, A

t
h) = 1

2 ,
which completes the proof.

The following example shows that the set Cκ=1
mcd is not closed w.r.t. the metric D1.

Example 4.2. Let Ahn
∈ Cmcd be the mutually completely dependent copula induced by the

bijective measure-preserving transformation hn : [0, 1] → [0, 1], given by

hn(x) =


x + j−1

n if x ∈
[
j−1
n , j

n

)
and j ∈

{
1, . . . , n

2

}
x− 1 + j

n if x ∈
[
j−1
n , j

n

)
and j ∈

{
n
2 + 1, . . . , n

}
1 if x = 1

10



for all n ∈ 2N and let Ah ∈ Ccd be the completely dependent copula induced by the λ-preserving
transformation h : [0, 1] → [0, 1] given by h(x) := 2x(mod1) (see Figure 1 in [9]). Setting Cn :=(〈

i−1
4 , i

4 , Ah2n

〉)
i∈{1,2,3,4} and C :=

(〈
i−1
4 , i

4 , Ah

〉)
i∈{1,2,3,4} we have Cn ∈ Cmcd and C ∈ Ccd and

according to [9, Example 3.3] it is straightforward to verify that limn→∞ D1(Cn, C) = 0. As
next step we reorder the shrunk copulas to obtain maximal D1-asymmetry. Let f denote the λ-
preserving interval exchange transformation f : [0, 1] → [0, 1] defined by f(x) := (x− 1

4 )1(
1
4 ,1

](x)+

(x + 3
4 )1[

0,
1
4

](x) and, furthermore, let Sf (Cn) ∈ Cmcd and Sf (C) ∈ Ccd denote the respective

shuffles (see Figure 3). Due to the fact that the metric D1 is shuffle-invariant w.r.t. bijective
transformations (using the same arguments as in the proof of Lemma 2.1) yields

lim
n→∞

D1(Sf (Cn),Sf (C)) = lim
n→∞

D1(Cn, C) = 0.

Setting U :=
[
0, 1

4

]
∪
[
3
4 , 1
]

and considering property (3) of Theorem 4.1 in [13] (see also Theorem
4.4 (iii) in the sequel) we directly obtain that Sf (Cn) and Sf (C) are maximal asymmetric w.r.t.
D1, which shows that Cκ=1

mcd is not closed w.r.t. the metric D1.

0

1/4

2/4

3/4

1

0 1/4 2/4 3/4 1
0

1/4

2/4

3/4

1

0 1/4 2/4 3/4 1

Figure 3: The support of the copulas µSf (Cn) (black) for n = 4 (left panel) and n = 8 (right panel)
as well as the copula µSf (C) (magenta) as considered in Example 4.2.

Leaving the subclass of mutually completely dependent copulas we will now derive novel and
handy characterizations of copulas with maximal D1-asymmetry and then show some topological
properties. The following lemma, showing that the ∗-product can not increase the Dp-distance,
will be useful in the sequel. The result has already been stated for D1 in a slightly different context
in [28].

Lemma 4.3. For every A,B,C ∈ C the following inequality holds for every p ∈ [1,∞):

Dp
p(A ∗B,A ∗ C) ≤ Dp

p(B,C).

Proof. Applying Lemma 2.2, Jensen’s inequality, disintegration and using the fact that µA is doubly

11



stochastic we obtain

Dp
p(A ∗B,A ∗ C) =

∫
[0,1]

∫
[0,1]

∣∣∣∣∣
∫
[0,1]

KB(t, [0, y])KA(x, dt) −
∫
[0,1]

KC(t, [0, y])KA(x, dt)

∣∣∣∣∣
p

dλ(x)dλ(y)

≤
∫
[0,1]

∫
[0,1]

∫
[0,1]

|KB(t, [0, y]) −KC(t, [0, y])|p KA(x, dt)dλ(x)dλ(y)

=

∫
[0,1]

∫
[0,1]2

|KB(t, [0, y]) −KC(t, [0, y])|p dµA(x, t)dλ(y)

=

∫
[0,1]

∫
[0,1]

|KB(t, [0, y]) −KC(t, [0, y])|p dλ(t)dλ(y) = Dp
p(B,C),

which completes the proof.

The next theorem gathers several equivalent characterizations of copulas having maximal D1-
asymmetry (see [13]), the novel ones established here are (v) and (vi).

Theorem 4.4. For every A ∈ C the following statements are equivalent:

(i) κ(A) = 1,

(ii) ΦA,At( 1
2 ) = 1 (or equivalently, A has maximal D∞-asymmetry),

(iii) there exists a Borel set U ∈ B([0, 1]) with the following properties:

λ(U ∩ [0, 1
2 ]) = λ(U ∩ [ 12 , 1]) = 1

4 , µA(U × [0, 1
2 ]) = 1

2 , µA([0, 1
2 ] × U) = 0,

(iv) there exist sets U1, U2 ∈ B([0, 1]) with U1 ⊆ [0, 1
2 ], U2 ⊆ ( 1

2 , 1], λ(U1) = λ(U2) = 1
4 and

V1 := [0, 1
2 ] \ U1 and V2 := ( 1

2 , 1] \ U2, and copulas C1, C2, C3, C4 ∈ C such that the following
identity

A(x, y) =
1

4
[C1(F1(x), G1(y)) + C2(G1(x), G2(y)) + C3(F2(x), F1(y)) + C4(G2(x), F2(y))]

holds, whereby Fi(x) := 4λ(Ui ∩ [0, x]) and Gi(x) := 4λ(Vi ∩ [0, x]) for i = 1, 2.

(v) (A ∗A)
(
1
2 ,

1
2

)
= 0,

(vi) D1(A ∗A,A ∗At) = 1
2 .

Proof. The equivalences of (i), (ii), (iii) and (iv) have already been proved in [13]. Note that the
equivalence in property (ii) directly follows from the facts that ΦA,At is Lipschitz continuous with
Lipschitz constant 2 and the function ΦA,At : [0, 1] → [0, 1] fulfills ΦA,At(y) ≤ min{2y, 2(1 − y)}
for every y ∈ [0, 1] (see Lemma 5 in [27]). To show that (i) and (v) are equivalent we may proceed
as follows: Suppose that κ(A) = 1. Then according to property (iii) there exists a Borel set
U ∈ B([0, 1]) with λ(U) = 1

2 such that KA(x, [0, 1
2 ]) = 1 for every x ∈ U . Applying Eq. (2) and

disintegration yields another Borel set V ⊆ U c with λ(V ) = 1
2 and KA(x, [0, 1

2 ]) = 0 for every

x ∈ V . Setting Ṽ := U c \ V , then obviously λ(Ṽ ) = 0 holds, and applying Lemma 2.2 we obtain

µA∗A([0, 1
2 ] × [0, 1

2 ]) =

∫
[0, 12 ]

∫
[0,1]

KA(s, [0, 1
2 ])KA(x, ds)dλ(x)

=

∫
[0, 12 ]

(∫
U

1KA(x, ds) +

∫
V

0KA(x, ds) +

∫
Ṽ

KA(s, [0, 1
2 ])KA(x, ds)

)
dλ(x)
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≤
∫
[0, 12 ]

KA(x, U)dλ(x) +

∫
[0, 12 ]

KA(x, Ṽ )dλ(x)

≤ µA

(
[0, 1

2 ] × U
)

+ µA

(
[0, 1] × Ṽ

)
= 0 + λ(Ṽ ) = 0.

Suppose now that (A ∗A)( 1
2 ,

1
2 ) = 0 holds. Then according to Eq. (5) we have∫
[0,1]

KAt(x, [0, 1
2 ])KA(x, [0, 1

2 ])dλ(x) = 0,

so there exists a set Λ ∈ B([0, 1]) with λ(Λ) = 1 such that KAt(x, [0, 1
2 ])KA(x, [0, 1

2 ]) = 0 holds for
all x ∈ Λ. Considering min{a, b} = 1

2 (a + b− |a− b|) therefore yields

ΦA,At( 1
2 ) =

∫
[0,1]

|KA(x, [0, 1
2 ]) −KAt(x, [0, 1

2 ])|dλ(x)

=

∫
[0,1]

KA(x, [0, 1
2 ])dλ(x) +

∫
[0,1]

KAt(x, [0, 1
2 ])dλ(x)

− 2

∫
[0,1]

min{KA(x, [0, 1
2 ]),KAt(x, [0, 1

2 ])}dλ(x)

= 1
2 + 1

2 − 2

∫
Λ

min{KA(x, [0, 1
2 ]),KAt(x, [0, 1

2 ])}dλ(x) =
1

2
+

1

2
− 2 · 0 = 1.

To show the equivalence of (i) and (vi) first assume that D1(A ∗ A,A ∗ At) = 1
2 . Then applying

Lemma 4.3 directly yields D1(A,At) ≥ 1
2 , hence κ(A) = 1. On the other hand, if κ(A) = 1 holds we

may proceed as follows: There exists a Borel set U ∈ B([0, 1]) with λ(U) = 1
2 and KA(x, [0, 1

2 ]) = 1
as well as KAt(x, [0, 1

2 ]) = 0 for every x ∈ U . Using disintegration and Eq. (2) there exists a Borel
set V ⊆ U c with λ(V ) = 1

2 and KA(x, [0, 1
2 ]) = 0 and KAt(x, [0, 1

2 ]) = 1 for every x ∈ V . As before,

set Ṽ := U c \ V . Applying Lemma 2.2 yields

A ∗At
(
1
2 ,

1
2

)
= µA∗At

([
0, 1

2

]
×
[
0, 1

2

])
=

∫
[0, 12 ]

∫
[0,1]

KAt

(
s,
[
0, 1

2

])
KA(x, ds)dλ(x)

≤
∫
[0, 12 ]

∫
Uc

1KA(x, ds)dλ(x) =

∫
[0, 12 ]

KA(x, U c)dλ(x)

= µA

([
0, 1

2

]
× U c

)
=

1

2
− µA

([
0, 1

2

]
× U

)
=

1

2

as well as

µA∗At

([
0, 1

2

]
×
[
0, 1

2

])
=

∫
[0, 12 ]

(∫
U

0KA(x, ds) +

∫
V

1KA(x, ds) +

∫
Ṽ

KAt

(
s,
[
0, 1

2

])
KA(x, ds)

)
dλ(x)

≥
∫
[0, 12 ]

KA(x, V )dλ(x) = µA

([
0, 1

2

]
× V

)
= 1

2 − µA

([
0, 1

2

]
× V c

)
= 1

2 −
(
µA

([
0, 1

2

]
× U

)
+ µA

([
0, 1

2

]
× Ṽ

))
≥ 1

2
.

Together with property (v) there exist Borel sets ∆1 ⊆ [0, 1
2 ] and ∆2 ⊆ ( 1

2 , 1] with λ(∆1) =
λ(∆2) = 1

2 such that

KA∗A
(
x1,
[
0, 1

2

])
= 0, KA∗A

(
x2,
[
0, 1

2

])
= 1 and KA∗At

(
x1,
[
0, 1

2

])
= 1, KA∗At

(
x2,
[
0, 1

2

])
= 0

13



for every x1 ∈ ∆1 and x2 ∈ ∆2, which gives

ΦA∗A,A∗At

(
1
2

)
=

∫
[0,1]

|KA∗A
(
x,
[
0, 1

2

])
−KA∗At

(
x,
[
0, 1

2

])
|dλ(x) = λ(∆1) + λ(∆2) = 1.

Since y 7→ ΦA,B(y) is Lipschitz continuous with Lipschitz constant 2 (see [27][Lemma 5]), the
property that D1(A ∗A,A ∗At) = 1

2 follows immediately and the proof is complete.

Remark 4.5. For mutually completely dependent copulas Ah ∈ Cmcd, property (vi) of Theorem 4.4
simplifies to

κ(Ah) = 1 if and only if D1(Ah ∗Ah,M) = D1(Ah2 ,M) = ∥h2 − id∥1 = 1
2 ,

where the second equality of the right hand side directly follows from [27][Proposition 15 (ii)].
Furthermore, considering property (v) of Theorem 4.4 one might conjecture that (A∗At)( 1

2 ,
1
2 ) = 1

2
also implies κ(A) = 1. For the symmetric copula M , however, it is clear that M

(
1
2 ,

1
2

)
= 1

2 as well
as M ∗M t = M ∗M = M holds.

Not surprisingly, the following result holds.

Proposition 4.6. The set Cκ=1 is closed in (C, D∂).

Proof. Let (An)n∈N be a sequence of maximal D1-asymmetric copulas fulfilling limn→∞ D∂(An, A) =
0 for some A ∈ C. Then applying Theorem 4.4, the triangle inequality and the fact that D∂-
convergence implies both limn→∞ ΦAn,A

(
1
2

)
= 0 and limn→∞ ΦAt

n,A
t

(
1
2

)
= 0 we obtain

1 = ΦAn,At
n

(
1
2

)
≤ ΦAn,A

(
1
2

)
+ ΦA,At

(
1
2

)
+ ΦAt,At

n

(
1
2

)
and hence

ΦA,At

(
1
2

)
≥ 1 − lim

n→∞
ΦAn,A

(
1
2

)
− lim

n→∞
ΦAt,At

n

(
1
2

)
= 1.

Remark 4.7. Proposition 4.6 certainly isn’t surprising, the following result, however, is. Key for
proving the statement is property (v) of Theorem 4.4.

Theorem 4.8. The set Cκ=1 is closed in (C, D1).

Proof. Suppose A,A1, A2, . . . are copulas, that κ(An) = 1 for every n ∈ N and that limn→∞ D1(An, A) =
0. Since the ∗-product is jointly continuous w.r.t. D1 (see [29]) we have

lim
n→∞

D1(An ∗An, A ∗A) = 0.

Considering that D1-convergence implies d∞-convergence, limn→∞(An ∗An)
(
1
2 ,

1
2

)
= A ∗A

(
1
2 ,

1
2

)
follows, and applying Theorem 4.4 the proof is complete.

Analogous to the fact, that shuffles are dense in (C, d∞) the set Cκ=1
mcd is dense in (Cκ=1, d∞).

Theorem 4.9. The set Cκ=1
mcd is dense in (Cκ=1, d∞).
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Proof. Fix ε > 0 and let A ∈ Cκ=1 be a copula with maximal D1-asymmetry. According to property
(iv) in Theorem 4.4 there exist sets U1, U2, V1, V2 ∈ B([0, 1]) and copulas C1, C2, C3, C4 ∈ C such
that

A(x, y) =
1

4

[
C1(F1(x), G1(y)) + C2(G1(x), G2(y)) + C3(F2(x), F1(y)) + C4(G2(x), F2(y))

]
,

whereby Fi(x) := 4λ(Ui∩[0, x]) = 4
∫
[0,x]

1Ui(s)λ(s) and Gi(x) := 4λ(Vi∩[0, x]) = 4
∫
[0,x]

1Vi(s)dλ(s)

for i ∈ {1, 2}. It is well known that Cmcd (in fact even the family of straight shuffles) is dense in
(C, d∞) (see, e.g., [6][Corollary 4.1.16]), hence, we can find mutually completely dependent copulas
Ch1

, Ch2
, Ch3

, Ch4
∈ Cmcd with d∞(Ci, Chi

) < ε for every i ∈ {1, 2, 3, 4}. Defining Ã by

Ã(x, y) :=
1

4

[
Ch1(F1(x), G1(y)) + Ch2(G1(x), G2(y)) + Ch3(F2(x), F1(y)) + Ch4(G2(x), F2(y))

]
,

and applying Theorem 4.4 we conclude that Ã has maximal D1-asymmetry too. Furthermore,
using the triangle inequality we obtain

sup
x,y∈[0,1]

|A(x, y) − Ã(x, y)| ≤ 1

4
sup

x,y∈[0,1]

|C1(F1(x), G1(y)) − Ch1(F1(x), G1(y))|

+
1

4
sup

x,y∈[0,1]

|C2(G1(x), G2(y)) − Ch2
(G1(x), G2(y))|

+
1

4
sup

x,y∈[0,1]

|C3(F2(x), F1(y)) − Ch3
(F2(x), F1(y))|

+
1

4
sup

x,y∈[0,1]

|C4(G2(x), F2(y)) − Ch4
(G2(x), F2(y))|

≤ 1

4

4∑
i=1

d∞(Ci, Chi
) <

ε

4
+

ε

4
+

ε

4
+

ε

4
= ε.

As final step we have to show Ã ∈ Cmcd, which can be done as follows: Fix y ∈ [0, 1], then by
applying Lemma 1 in [20] using the fact that KChi

(x, [0, y]) is given by KChi
(x, [0, y]) = 1[0,y](hi(x))

for λ-a.e. x ∈ [0, 1] and every i ∈ {1, . . . , 4}, the Markov kernel KÃ(x, [0, y]) of Ã can be expressed
by

KÃ(x, [0, y]) =


1[0,G1(y)] (h1 ◦ F1(x)) for x ∈ U1

1[0,G2(y)] (h2 ◦G1(x)) for x ∈ V1

1[0,F1(y)] (h3 ◦ F2(x)) for x ∈ U2

1[0,F2(y)] (h4 ◦G2(x)) for x ∈ V2

for λ-a.e. x ∈ [0, 1]. Since {U1, U2, V1, V2} form a partition of [0, 1], for each y ∈ [0, 1] we have that
KÃ(x, [0, y]) ∈ {0, 1} for λ-a.e. x ∈ [0, 1], which is equivalent to Ã being completely dependent
(see [3]). Using the same arguments we also obtain for every y ∈ [0, 1] that KÃt(x, [0, y]) =

(∂1Ã
t)(x, y) = (∂2Ã)(y, x) ∈ {0, 1} for λ-a.e. x ∈ [0, 1], i.e., Ãt is completely dependent too.

Altogether, we have shown that Ã ∈ Cmcd, which completes the proof.

5 Maximal Dp-asymmetry

Since the metrics Dp, p ∈ [1,∞] induce the same topology on C one could conjecture that maximal
Dp-asymmetry might be the same as maximal D1-asymmetry. We will falsify this idea and start
with 3 simple lemmata.
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Lemma 5.1 ([27]). Suppose that h1, h2 are λ-preserving transformations on [0, 1] and let Ah1 ,
Ah2

denote the corresponding completely dependent copulas. Then

Dp
p(Ah1 , Ah2) = D1(Ah1 , Ah2) = ∥h1 − h2∥1

holds for every p ∈ (1,∞).

Lemma 5.2. The metric space (C, Dp) has the following diameter:

1. diamDp
(C) = 2−

1
p for p ∈ [1,∞)

2. diamD∞(C) = 1.

Proof. According to Lemma 5 in [27] we have

diamD1
(C) =

∫
[0,1]

min{2y, 2(1 − y)}dλ(y) =
1

2
.

Since |KA(x, [0, y]) −KB(x, [0, y])| ∈ [0, 1] it is straightforward to verify that

Dp
p(A,B) ≤ D1(A,B) ≤ Dp(A,B) (8)

holds for every A,B ∈ C and p ∈ [1,∞). As direct consequence we get Dp(A,B) ≤ D1(A,B)
1
p ≤

2−
1
p . On the other hand, there exist copulas A,B ∈ C with Dp(A,B) = 2−

1
p . Considering A = M

and B = W and applying Lemma 5.1 yields

Dp
p(M,W ) = D1(M,W ) =

1

2
.

The assertion for p = ∞ is a direct consequence of Lemma 5 in [27].

Slightly adapting the notation of the previous section we will now focus on the family Cκp=1 of all

bivariate copulas with maximal Dp-asymmetry, i.e., Cκp=1 := {A ∈ C : κp(A) := 2
1
pDp(A,At) = 1}.

Building upon Lemma 5.1 and Theorem 3.5 in [13] there are mutually completely dependent copulas
A ∈ Cmcd such that κp(A) = 1 is attained for every p ∈ [1,∞]. In fact, the copula Ah defined in
Example 3.4 in [13] has maximal Dp-asymmetry for every p ∈ [1,∞]. The following lemma shows
that a copula with maximal Dp-asymmetry for p ∈ (1,∞) also has maximal D1-asymmetry.

Lemma 5.3. If A ∈ C satisfies κp(A) = 1 for some p ∈ (1,∞) then κ1(A) = 1 holds.

Proof. Using the inequality Dp
p(A,B) ≤ D1(A,B) as well as the fact that D1(A,B) ≤ 1

2 holds for
all A,B ∈ C we get

1 = 2
1
pDp(A,At) ≤

(
2 D1(A,At)

) 1
p ≤ 1,

which yields D1(A,At) = 1
2 .

The following example, however, shows that the reverse implication does not hold in general.

Example 5.4. Suppose that A ∈ C corresponds to the uniform distribution on the union of the four
squares (see Figure 4)(

0, 1
4

)
×
(
1
4 ,

2
4

)
,
(
1
4 ,

2
4

)
×
(
2
4 ,

3
4

)
,
(
2
4 ,

3
4

)
×
(
3
4 , 1
)
,
(
3
4 , 1
)
×
(
0, 1

4

)
.
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Since A (and At) is a checkerboard copula (see, for instance, [11, 19]) a version of the Markov
kernel of A is piecewise linear in y for fixed x ∈ [0, 1] and does not depend on the choice of the
point x ∈

(
i−1
4 , i

4

)
for every i ∈ {1, . . . , 4}, (a version of) the corresponding Markov kernel is given

by

KA(x, [0, y]) =



(4y − 1)1( 1
4 ,

2
4 ](y) + 1( 2

4 ,1]
(y) for x ∈

(
0, 1

4

)
(4y − 2)1( 2

4 ,
3
4 ](y) + 1( 3

4 ,1]
(y) for x ∈

(
1
4 ,

2
4

)
(4y − 3)1( 3

4 ,1]
(y) for x ∈

(
2
4 ,

3
4

)
(4y)1[0, 14 ](y) + 1( 1

4 ,1]
(y) for x ∈

(
3
4 , 1
)
.

It is straightforward to verify κ1(A) = 1 (e.g., by using property (iv) or property (v) in Theorem

0

1/4

2/4

3/4

1

0 1/4 2/4 3/4 1
0

1/4

2/4

3/4

1

0 1/4 2/4 3/4 1

Figure 4: Density of the copula A (left panel) and the copula At (right panel) considered in
Example 5.4. The copula A has maximal D1-asymmetry, i.e., κ1(A) = 1, nevertheless κp(A) < 1
holds for p ∈ (1,∞).

4.4). On the other hand, simple calculations (see Appendix 6) yield

Dp
p(A,At) =

1

4
+ 2

∫
[0, 14 ]

(4x)pdλ(x) =
1

4
+

2

4p + 4

for every p ∈ [1,∞). As a direct consequence we get Dp
p(A,At) < 2−1 for every p ∈ (1,∞), i.e.,

although A has maximal D1-asymmetry, it fails to have maximal Dp-asymmetry.

Contrary to D1, the class Cκp=1, p ∈ (1,∞) only contains mutually completely dependent
copulas.

Theorem 5.5. If A ∈ C has maximal Dp-asymmetry for p ∈ (1,∞), then A is a mutually com-
pletely dependent copula.

Proof. If κp(A) = 1 we have κ1(A) = 1 and Dp(A,At) = 2−
1
p , which implies

1

2
=

∫
[0,1]

∫
[0,1]

|KA(x, [0, y]) −KAt(x, [0, y])|p dλ(x)dλ(y)
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≤
∫
[0,1]

∫
[0,1]

|KA(x, [0, y]) −KAt(x, [0, y])| dλ(x)dλ(y) =
1

2
.

Therefore we obtain

|KA(x, [0, y]) −KAt(x, [0, y])|p = |KA(x, [0, y]) −KAt(x, [0, y])| ,

or equivalently, that

|KA(x, [0, y]) −KAt(x, [0, y])| ∈ {0, 1} (9)

holds for λ2-a.e. (x, y) ∈ [0, 1]2. According to Lemma 5.3 and property (iii) in Theorem 4.4 there
exist sets U ∈ B([0, 1]) and V ∈ B([0, 1]) such that U ∩ V = ∅, λ(U) = λ(V ) = 1

2 and

KA(x, [0, y]) =

{
≤ 1 for every y ∈

[
0, 1

2

]
1 for every y ∈

(
1
2 , 1
] KAt(x, [0, y]) =

{
0 for every y ∈

[
0, 1

2

]
≤ 1 for every y ∈

(
1
2 , 1
] ,

for every x ∈ U as well as

KA(x, [0, y]) =

{
0 for every y ∈

[
0, 1

2

]
≤ 1 for every y ∈

(
1
2 , 1
] KAt(x, [0, y]) =

{
≤ 1 for every y ∈

[
0, 1

2

]
1 for every y ∈

(
1
2 , 1
] ,

for every x ∈ V . Fix x ∈ U such that Eq. (9) holds and suppose that KA(x, [0, y]) = y0 ∈ (0, 1)
for some y ∈

[
0, 1

2

]
. Then due to Eq. (9) the Markov kernel of At must satisfy KAt(x, [0, y]) = y0,

which is a contradiction to the fact that KAt(x, [0, y]) = 0 for every y ∈
[
0, 1

2

]
. Hence we obtain that

KA(x, [0, y]) ∈ {0, 1} for every y ∈ [0, 1]. In an analogous way we obtain that KAt(x, [0, y]) ∈ {0, 1}
holds for every y ∈ [0, 1]. Proceeding in the exactly same manner for x ∈ V we get that for λ-a.e.
x ∈ [0, 1] and every y ∈ [0, 1] the Markov kernels of A and At satisfy KA(x, [0, y]) ∈ {0, 1} and
KAt(x, [0, y]) ∈ {0, 1}. By Theorem 7.1 in [3] and Lemma 3.4 in [10] it follows that A and At are
completely dependent, implying that A is mutually completely dependent.

Altogether we have shown the following results:

Corollary 5.6. The following properties hold:

1. Cκ1=1 = Cκ∞=1.

2. Cκ1=1 ⫌ Cκp=1 for every p ∈ (1,∞).

3. Cκ1=1
mcd = Cκp=1 for every p ∈ (1,∞).

6 Maximal Dp-asymmetric copulas and their values for ζ1

and ξ

In Section 3 we have shown that copulas A ∈ C with maximal d∞-asymmetry have very high
dependence scores with respect to ζ1 and ξ. Here we now focus on the range of these dependence
measures to maximal Dp-asymmetric copulas.

Theorem 6.1. If A ∈ C satisfies κp(A) = 1 for some p ∈ (1,∞) then ζ1(A) = ξ(A) = 1.

Proof. Since ζ1(A) and ξ(A) are 1 if and only if A is completely dependent, the assertion directly
follows from Theorem 5.5.
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For the case p = 1 different values for ξ and ζ1 are possible.

Theorem 6.2. If A ∈ C satisfies κ1(A) = 1 then ξ(A) ∈
(
1
2 , 1
]
holds.

Proof. Proceeding analogously to the proof of Theorem 4.4 we obtain (At ∗ A)
(
1
2 ,

1
2

)
= 1

2 if
κ1(A) = 1 (see Appendix 6). Since At ∗A is a copula, we find copulas A1, A2 ∈ C with (At ∗A) =(〈

i−1
2 , i

2 , Ai

〉)
i∈{1,2} =: Ã. Setting CΠ :=

(〈
i−1
2 , i

2 ,Π
〉)

i∈{1,2}, µAt∗A ̸= µCΠ
follows. In fact,

according to Theorem 4.4 there exists a set U ∈ B([0, 1]) such that λ
(
U ∩

[
0, 1

2

])
= λ(U ∩

[
1
2 , 1
]
) =

1
4 and 0 = µA([0, 1

2 ] × U) =
∫
[0,

1
2 ]
KA(x, U)dλ(x). Hence, we can find Borel sets Λ1 ⊆ [0, 1

2 ],

Λ2 ⊆ ( 1
2 , 1] such that λ(Λ1) = λ(Λ2) = 1

2 and KA(x, U) = 0 for all x ∈ Λ1 and KA(x, U) = 1 for
all x ∈ Λ2. The set Λ3 defined by [0, 1] \ (Λ1 ∪ Λ2) obviously fulfils λ(Λ3) = 0. Hence, we have

µAt∗A(U × U) =

∫
U

∫
[0,1]

KA(s, U)KAt(x, ds)dλ(x)

=

∫
U

KAt(x,Λ2)dλ(x) +

∫
U

∫
Λ3

KA(s, U)KAt(x, ds)dλ(x)

≥
∫
U

KAt(x,Λ2)dλ(x) = µAt(U × Λ2) = µA(Λ2 × U) =

∫
Λ2

KA(x, U)dλ(x)

=

∫
( 1

2 ,1]
KA(x, U)dλ(x) = µA

((
1
2 , 1
]
× U

)
= λ(U) − µA

([
0, 1

2

]
× U

)
= λ(U) =

1

2
.

On the other hand

µCΠ
(U × U) =

∫
U

KCΠ
(x, U)dλ(x) =

∫
U∩[0, 12 ]

KCΠ
(x, U)dλ(x) +

∫
U∩( 1

2 ,1]

KCΠ
(x, U)dλ(x)

=

∫
U∩[0, 12 ]

2λ(U ∩ [0, 1
2 ])dλ(x) +

∫
U∩( 1

2 ,1]

2λ(U ∩
(
1
2 , 1
]
)dλ(x) =

1

4

holds, implying Ai ̸= Π for i = 1, 2, hence, considering that according to Lemma 4.3 we have
D2

2(A,Π) ≥ D2
2(At ∗A,At ∗ Π) = D2

2(At ∗A,Π) and applying Corollary 3.2 finally yields

1 ≥ ξ(A) ≥ ξ(Ã) =
1

4
ξ(A1) +

1

4
ξ(A2) +

1

2
>

1

2
.

Theorem 6.3. If A ∈ C satisfies κ1(A) = 1, then ζ1(A) ∈
[
3
4 , 1
]
holds.

Proof. Using the same arguments as in the proof of Theorem 6.2 we find copulas A1, A2 ∈ C such
that (At ∗A) =

(〈
i−1
2 , i

2 , Ai

〉)
i∈{1,2} =: Ã holds. Since Ã is an ordinal sum it is clear that the (SI)-

rearrangement Ã↑ of Ã satisfies Ã↑ =
(〈

i−1
2 , i

2 , A
↑
i

〉)
i∈{1,2}

. As stochastically increasing copula,

A↑
i fulfills A↑

i (x, y) ≥ Π(x, y) for all (x, y) ∈ [0, 1]2 and i ∈ {1, 2}, implying Ã↑(x, y) ≥ CΠ(x, y) for
every (x, y) ∈ [0, 1]2, whereby CΠ is defined as CΠ :=

(〈
i−1
2 , i

2 ,Π
〉)

i∈{1,2}. Hence, using Lemma

4.3 we get

1

3
≥ D1(A,Π) ≥ D1(At ∗A,At ∗ Π) = D1(At ∗A,Π) = D1(Ã↑,Π) ≥ D1(CΠ,Π),
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whereby we used the fact that D1(A,Π) is monotone with respect to the pointwise order in C↑ (see
[26]). Using Lemma 3.1 we obtain

ζ1(CΠ) = 3D1(CΠ,Π)

=
3

4

∫
[0,1]

∫
[0,1]

∣∣∣y − y

2

∣∣∣ dλ(x)dλ(y) +
3

4

∫
[0,1]

∫
[0,1]

∣∣∣∣y − 1

2
− y

2

∣∣∣∣ dλ(x)dλ(y) +
3

8

=
3

16
+

3

8
− 3

16
+

3

8
=

6

8
=

3

4
,

which completes the proof.

The following example demonstrates that it is possible to find copulas A ∈ Cκ1=1 such that
ζ1(A) (or ξ(A), respectively) is arbitrarily close to the lower bound derived in Theorem 6.2 and
Theorem 6.3.

Example 6.4. Let n ∈ N be a natural number with n ≥ 3, set N := 2n and define the sets
U1
N , U2

N , V 1
N , V 2

N ∈ B([0, 1]) by

U1
N =

N
4⋃

j=1

(
2j − 2

N
,

2j − 1

N

)
, V 1

N =

N
4⋃

j=1

(
2j − 1

N
,

2j

N

)
,

U2
N =

N
4⋃

j=1

(
1

2
+

2j − 2

N
,

1

2
+

2j − 1

N

)
, V 2

N =

N
4⋃

j=1

(
1

2
+

2j − 2

N
,

1

2
+

2j − 1

N

)
.

Obviously, we have λ(U1
N ) = λ(U2

N ) = λ(V 1
N ) = λ(V 2

N ) = 1
4 and λ(U1

N ∪ U2
N ∪ V 1

N ∪ V 2
N ) = 1.

Letting AN denoting the copula corresponding to the uniform distribution on the union of the four
sets U1

N × V 1
N , U2

N × U1
N , V 1

N × V 2
N and V 2

N × U2
N (see Figure 5), then by Theorem 4.4 AN has

maximal D1-asymmetry. As next step we calculate the dependence measure ζ1(AN ).
Applying Lemma 6.3 in [10] and using the fact that for every y ∈ [0, 1] the identity of KAN

(x1, [0, y]) =
KAN

(x2, [0, y]) holds for λ-a.e. x1, x2 ∈ X, whereby X ∈ {U1
N , U2

N , V 1
N , V 2

N}, we obtain

ζ1(AN )

3
= D1(AN ,Π) ≤ 2

N
+

1

N

N∑
j=1

∫
[0,1]

∣∣∣∣KAN

(
x,

[
0,

j

N

])
− j

N

∣∣∣∣ dλ(x)

=
2

N
+

∑
X∈{U1

N ,U2
N ,V 1

N ,V 2
N}

1

N

N∑
j=1

∫
X

∣∣∣∣KAN

(
x,

[
0,

j

N

])
− j

N

∣∣∣∣ dλ(x)︸ ︷︷ ︸
=:m(X)

.

Considering X = U1
N and x ∈ U1

N , a version of the Markov kernel KAn

(
x,
[
0, j

N

])
is given by

KAN

(
x,

[
0,

j

N

])
=


2j
N for j ∈ {2, 4, . . . , N

2 }
2(j−1)

N for j ∈ {1, 3, . . . , N
2 − 1}

1 for j > N
2 ,

which yields

m(U1
N ) =

1

4N

N∑
j=1

∣∣∣∣KAN

(
x,

[
0,

j

N

])
− j

N

∣∣∣∣
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=
1

4N

 ∑
j∈{2,4,...,N/2}

∣∣∣∣2jN − j

N

∣∣∣∣+
∑

j∈{1,3,...,N/2−1}

∣∣∣∣2(j − 1)

N
− j

N

∣∣∣∣+

N∑
j=N

2 +1

(
1 − j

N

)
=

1

4N

 N
4∑

j=1

∣∣∣∣4jN − 2j

N

∣∣∣∣+

N
4∑

j=1

∣∣∣∣4(j − 1)

N
− 2j − 1

N

∣∣∣∣+

N
2∑

j=1

(
1

2
− j

N

)
=

1

4N

(
N

4
+

2

N
− 1

2

)
≤ 1

16
+

1

2N2
.

In a similar manner we obtain m(U2
N ) = 1

16 + 1
8N , m(V 1

N ) = 1
16 + 1

8N and m(V 2
N ) ≤ 1

16 + 1
2N2 .

Together with Theorem 6.3 it follows that

3

4
≤ ζ1(AN ) ≤ 3

4
+

27

4N
+

3

N2
,

which shows that for sufficiently large N ∈ N the dependence value ζ1(AN ) is arbitrarily close to
3
4 .
Using similar calculations (see Appendix 6) yields

1

2
< ξ(AN ) ≤ 1

2
+ aN ,

whereby limN→∞ aN = 0.

Remark 6.5. Slightly modifying the construction from Example 6.4 (which corresponds to copying
shrunk versions of the product copula Π in the small squares) we now construct the copula BN by
copying shrunk versions of M in every square of the ‘diagonal’ of each of the four sets U1

N × V 1
N ,

U2
N × U1

N , V 1
N × V 2

N and V 2
N × U2

N as depicted in Figure 5 (magenta lines). The shuffle BN is
obviously maximal D1-asymmetric and, being completely dependent, fulfills ζ1(BN ) = 1 = ξ(BN ).

0

1/4

2/4

3/4

1

0 1/4 2/4 3/4 1
0

1/4

2/4

3/4

1

0 1/4 2/4 3/4 1

Figure 5: Density of the copula AN (gray) as considered in Example 6.4 and support of the
mutually completely dependent copula BN (magenta) according to Remark 6.5 for N = 8 (left
panel) and N = 32 (right panel).
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Hence, setting Cα
N := αAN + (1 − α)BN for every α ∈ [0, 1] (with AN according to Example 6.4)

obviously yields a maximal D1-asymmetric copula Cα
N . Due to the fact that ζ1(Cα

N ) and ξ(Cα
N ) is

continuous in α the intermediate value theorem implies that that for every s ∈ [ζ1(AN ), 1] we can
find a copula Cα

N with ζ1(Cα
N ) = s and the same result holds for ζ1 replaced by ξ. In other words,

each point in the intervals mentioned in Theorem 6.2 and Theorem 6.3 is attained.

Remark 6.6. We have neither been able to find a copula A ∈ Cκ1=1 fulfilling ζ1(A) = 3
4 , nor to

prove that such a copula does not exist.
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Appendix

Calculations for the proof of Theorem 3.5:
To calculate ζ1(CΠ) we apply Lemma 3.1 and obtain

ζ1(CΠ) = 3D1(CΠ,Π) =
1

3

∫ 1

0

∫ 1

0

∣∣∣y − y

3

∣∣∣ dλ(x)dλ(y) +
1

3

∫ 1

0

∫ 1

0

∣∣∣∣y − 1

3
− y

3

∣∣∣∣ dλ(x)dλ(y)+

+
1

3

∫ 1

0

∫ 1

0

∣∣∣∣y − 2

3
− y

3

∣∣∣∣ dλ(x)dλ(y) +
10

18

=
1

3

∫
[0,1]

2y

3
dλ(y) +

1

3

∫
[0,1]

∣∣∣∣2y − 1

3

∣∣∣∣ dλ(y) +
1

3

∫
[0,1]

2 − 2y

3
dλ(y) +

10

18

=
2

18
+

1

18
+

2

18
+

10

18
=

15

18
=

5

6
.

Let As be the ordinal sum of Cs, i.e., As :=
(
⟨k−1

3 , k
3 , Cs⟩

)
k∈{1,2,3}, whereby Cs is the ordinal sum

considered in Example 3.3. Then for the integrals considered in Lemma 3.1 we obtain for s ∈ [0, 1
3 ]

I1 =

∫
[0,1]

∫
[0,1]

|y − ys| dxdy =
1 − s

2

I2 =

∫
[0,1]

∫
[0,1]

∣∣1[0,y](x) − (s + y( 1
3 − s))

∣∣ dxdy
=

∫
[0,1]

y(1 − (s + y( 1
3 − s)))dy +

∫
[0,1]

(1 − y)(s + y( 1
3 − s))dy

=
1

18
(7 − 3s) +

1

18
(6s + 1) =

1

18
(3s + 8)

I3 =

∫
[0,1]

∫
[0,1]

∣∣y − ( 1
3 + sy)

∣∣ =
9s2 − 12s + 5

18 − 18s

I4 =

∫
[0,1]

∫
[0,1]

∣∣1[0,y](x) − ( 1
3 + s + y( 1

3 − s))
∣∣ dxdy =

1

18
(4 − 3s) +

1

18
(6s + 4) =

1

18
(3s + 8)

I5 =

∫
[0,1]

∫
[0,1]

∣∣y − ( 2
3 + sy)

∣∣ =
9s2 − 6s + 5

18 − 18s

I6 =

∫
[0,1]

∫
[0,1]

∣∣1[0,y](x) − ( 2
3 + s + y( 1

3 − s))
∣∣ dxdy =

1

18
(1 − 3s) +

1

18
(6s + 7) =

1

18
(3s + 8).

Applying Lemma 3.1 again we get

D1(As,Π) = s2I1 +

(
1

3
− s

)2

I2 + s2I3 +

(
1

3
− s

)2

I4 + s2I5 +

(
1

3
− s

)2

I6 +
5

54
(2 + 9s− 27s2)

=
9s4 − 4s2 − 3s + 3

9 − 9s
∈
[

5

18
,

1

3

]
for s ∈

[
0, 1

3

]
. Since f(s) := D1(As,Π) is a continuous and decreasing function on s ∈

[
0, 1

3

]
and

f(0) = 1
3 and f( 1

3 ) = 5
18 , we have shown that ζ1(As) attains every value in

[
5
6 , 1
]
.
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Calculations for Example 5.4: Partitioning the integration area and using the fact that (a ver-
sion of) the Markov kernel of A and At does not depend on the choice of the point x ∈

(
i−1
4 , i

4

)
we obtain

Dp
p(A,At) =

∫
[0,1]

∫
[0,1]

|KA(x, [0, y]) −KAt(x, [0, y])|pdλ(x)dλ(y)

=
2

4

(∫
[ 1
4 ,

2
4 ]

(4y − 1)pdλ(y) +

∫
[ 2
4 ,

3
4 ]

1dλ(y) +

∫
[ 3
4 ,

4
4 ]

(1 − 4y + 3)pdλ(y)

)

+
2

4

(∫
[ 0
4 ,

1
4 ]

(4y)pdλ(y) +

∫
[ 1
4 ,

2
4 ]

1dλ(y) +

∫
[ 2
4 ,

3
4 ]

(1 − 4y + 2)pdλ(y)

)

=

∫
[0, 14 ]

(4x)pdλ(x) +
1

4
+

∫
[0, 14 ]

(4x)pdλ(x)

=
1

4
+ 2

∫
[0, 14 ]

(4x)pdλ(x).

Calculations for the proof of Theorem 6.2: To show that At ∗A( 1
2 ,

1
2 ) = 1

2 follows from κ1(A) = 1
we can proceed as follows: According to Theorem 4.4 property (iii) and using disintegration there
exists a Borel set U ∈ B([0, 1]) with λ(U) = 1

2 and KA(x, [0, 1
2 ]) = 1 as well as KAt(x, [0, 1

2 ]) = 0
for every x ∈ U . Using disintegration and Eq. (2) again yields the existence of a Borel set V ⊆ U c

with λ(V ) = 1
2 and KA(x, [0, 1

2 ]) = 0 and KAt(x, [0, 1
2 ]) = 1 for every x ∈ V . Set Ṽ := U c \ V ,

then applying Lemma 2.2 yields

At ∗A
(
1
2 ,

1
2

)
= µAt∗A

([
0, 1

2

]
×
[
0, 1

2

])
=

∫
[0, 12 ]

∫
[0,1]

KA

(
s,
[
0, 1

2

])
KAt(x, ds)dλ(x)

≤
∫
[0, 12 ]

∫
U

1KAt(x, ds)dλ(x) +

∫
[0, 12 ]

∫
Ṽ

1KAt(x, ds)dλ(x)

= µAt

([
0, 1

2

]
× U

)
+ µAt

([
0, 1

2

]
× Ṽ

)
≤ µA

(
U ×

[
0, 1

2

])
+ λ(Ṽ ) =

1

2
,

as well as

µAt∗A
([

0, 1
2

]
×
[
0, 1

2

])
=

∫
[0, 12 ]

(∫
U

1KAt(x, ds) +

∫
V

0KAt(x, ds) +

∫
Ṽ

KA

(
s,
[
0, 1

2

])
KAt(x, ds)

)
dλ(x)

≥
∫
[0, 12 ]

KAt(x, U)dλ(x) = µAt

([
0, 1

2

]
× U

)
= µA

(
U ×

[
0, 1

2

])
=

1

2
.

Altogether we have shown At ∗A( 1
2 ,

1
2 ) = 1

2 .

Additional calculations for Example 6.4: First of all we derive a result similar to that of Lemma
6.3 in [10] for D2

2(A,Π). Using Eq. (2) we obtain∣∣∣∣ ∫
[0,1]

∫
[0,1]

KA(x, [0, y])2dλ(x)dλ(y) −
∫
[0,1]

1

n

n∑
i=1

KA(x, [0, i
n ])2dλ(x)

∣∣∣∣
≤

n∑
i=1

∫
[0,1]

∫
[ i−1

n , i
n ]

|KA(x, [0, y])2 −KA(x, [0, i
n ])2|dλ(y)dλ(x)
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≤ 1

n

n∑
i=1

∫
[0,1]

KA(x, [0, i
n ])2 −KA(x, [0, i−1

n ])2dλ(x)

=
1

n

n∑
i=1

∫
[0,1]

(
KA(x, [0, i

n ]) −KA(x, [0, i−1
n ])

) (
KA(x, [0, i

n ]) + KA(x, [0, i−1
n ])

)
dλ(x)

≤ 2

n

n∑
i=1

∫
[0,1]

KA(x, ( i−1
n , i

n ])dλ(x) =
2

n

n∑
i=1

λ

((
i− 1

n
,
i

n

])
=

2

n
.

Proceeding analogously to Example 6.4 and applying the previous inequality yields

ξ(AN ) + 2

6
=

6D2
2(AN ,Π) + 2

6
= D2

2(AN ,Π) +
1

3
=

∫
[0,1]

∫
[0,1]

KAN
(x, [0, y])2dλ(x)dλ(y) − 1

3
+

1

3

=

∫
[0,1]

∫
[0,1]

KAN
(x, [0, y])2dλ(x)dλ(y) ≤ 2

N
+

1

N

N∑
j=1

∫
[0,1]

KAN

(
x,

[
0,

j

N

])2

dλ(x)

=
2

N
+

∑
X∈{U1

N ,U2
N ,V 1

N ,V 2
N}

1

N

N∑
j=1

∫
X

KAN

(
x,

[
0,

j

N

])2

dλ(x)︸ ︷︷ ︸
=:m(X)

.

Considering X = U1
N and x ∈ U1

N we obtain

m(U1
N ) =

1

4N

N∑
j=1

KAN

(
x,

[
0,

j

N

])2

=
1

4N

 N
4∑

j=1

(
4j

N

)2

+

N
4∑

j=1

(
4(j − 1)

N

)2

+
N

2


=

1

4N

(
(N + 2)(N + 4)

12N
+

N2 − 6N + 8

12N
+

N

2

)
=

1

6
+

1

3N2
.

In an analogous manner we get

m(U2
N ) =

1

24
+

1

4N
+

1

3N2
, m(V 1

N ) =
1

24
+

1

3N2
, m(V 2

N ) =
1

6
+

1

4N
+

1

3N2
,

which altogether yields 1
2 < ξ(AN ) ≤ 1

2 + 15
N + 8

N2 .
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