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Abstract

Motivated by a recently established result saying that within the class of bivariate Archime-
dean copulas standard pointwise convergence implies weak convergence of almost all condi-
tional distributions this contribution studies the class Cdar of all d-dimensional Archimedean
copulas with d ≥ 3 and proves the afore-mentioned implication with respect to conditioning
on the first d− 1 coordinates. Several properties equivalent to pointwise convergence in Cdar
are established and - as by-product of working with conditional distributions (Markov ker-
nels) - alternative simple proofs for the well-known formulas for the level set masses µC(Lt)
and the Kendall distribution function F d

K as well as a novel geometrical interpretation of
the latter are provided. Viewing normalized generators ψ of d-dimensional Archimedean
copulas from the perspective of their so-called Williamson measures γ on (0,∞) is then
shown to allow not only to derive surprisingly simple expressions for µC(Lt) and F d

K in
terms of γ and to characterize pointwise convergence in Cdar by weak convergence of the
Williamson measures but also to prove that regularity/singularity properties of γ directly
carry over to the corresponding copula Cγ ∈ Cdar. These results are finally used to prove the
fact that the family of all absolutely continuous and the family of all singular d-dimensional
copulas is dense in Cdar and to underline that despite of their simple algebraic structure
Archimedean copulas may exhibit surprisingly singular behavior in the sense of irregularity
of their conditional distribution functions.
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1. Introduction

Archimedean copulas are a well-known family of dependence models whose popularity is
mainly due to their simple algebraic structure: given a so-called (Archimedean, sufficiently
monotone) generator ψ : [0,∞) → [0, 1] =: I and letting φ denote its pseudo-inverse the
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Archimedean copula Cψ is defined by

Cψ(x1, . . . , xd) = ψ(φ(x1) + · · ·+ φ(xd)).

As a consequence, analytic, dependence, and convergence properties of Archimedean cop-
ulas can be characterized in terms of the corresponding generators (see, e.g., [2, 4, 13, 20]
and [21, Chapter 4]). In particular, it was recently shown in [13] that within the class of
bivariate Archimedean copulas pointwise convergence is equivalent to uniform convergence
of the corresponding generators and, more importantly, even implies weak convergence of
almost all conditional distributions (a.k.a weak conditional convergence, a concept generally
much stronger than pointwise convergence). This result is surprising insofar that given
samples (X1, Y1), (X2, Y2), . . . from some bivariate copula C the corresponding sequence of
empirical copulas (Ên)n∈N does not necessarily converge weakly conditional to C.
The focus of the current paper is twofold: on the one hand we study convergence in the
class Cdar of all d-dimensional Archimedean copulas, d ≥ 3, and show that most results from
the bivariate setting as established in [13] also hold in Cdar, including the surprising fact
that pointwise convergence implies weak conditional convergence (whereby we consider
conditioning on the first d− 1 coordinates). As a nice by-product of working with Markov
kernels (conditional distributions) we obtain simple, alternative proofs of the well-known
formulas for the Kendall distribution function F d

K and the level set masses of Archimedean
copulas. To the best of the authors’ knowledge, working with so-called ℓ1-norm symmetric
distributions (as studied in [20]) nowadays seems to be the standard approach for deriving
these formulas in the multivariate setting - we show that working with Markov kernels
constitutes an interesting alternative and may provide additional insight. Additionally,
motivated by [21, Chapter 4.3] and [4, Section 3] we offer a seemingly novel geometric
interpretation of the level set masses in terms of ψ.
And, on the other hand, we revisit the close interrelation between Archimedean copulas
and probability measures γ on (0,∞) via the so-called Williamson transform as studied in
[20] (also see [24, Theorem 1.11]), characterize properties of the generator ψ in terms of
normalized γ (to which we will refer to as Williamson measure) and then prove the fact
that pointwise convergence in Cdar is equivalent to weak convergence of the corresponding
probability measures on (0,∞). Moreover, we derive surprisingly simple expressions
for the level set masses and the Kendall distribution functions in terms of γ and then
show that singularity/regularity properties of γ directly carry over to the corresponding
Archimedean copula Cγ ∈ Cdar. This very property is then used, firstly, to show that the
family of absolutely continuous as well as two disjoint subclasses of the family of all singular
Archimedean copulas are dense in Cdar and, secondly, to illustrate the fact that despite
their simple and handy algebraic structure Archimedean copulas may exhibit surprisingly
irregular behavior by constructing elements of Cdar which have full support although being
singular (see [4] for the already established bivariate results).

The rest of this contribution is organized as follows: Section 2 contains notation and
preliminaries (in particular on Markov kernels) that are used throughout the text. Sec-
tion 3 starts with deriving an explicit expression for the Markov kernel of d-dimensional
Archimedean copulas, then restates the well-known formulas for the masses of level sets
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as well as the Kendall distribution function, and provides a geometric interpretation for
the latter in terms of the generator ψ. In Section 4 we derive various characterizations
of pointwise convergence in Cdar in several steps and prove the main result saying that
pointwise convergence implies weak conditional convergence (with respect to the first d− 1
coordinates). Turning to the Williamson transform, in Section 5 we first establish some
complementing results on the interrelation of the generator ψ and the Williamson mea-
sure γ, then characterize pointwise convergence in Cdar in terms of weak convergence of the
Williamson measures, and finally show how regularity/singularity properties of γ carry over
to Cγ. These properties are then used to prove the afore-mentioned denseness results and
to construct singular Archimedean copulas with full support. The Clayton and the Gumbel
families of Archimedean copulas will serve as simple accompanying examples underlining
the obtained results. Notice, however, that the real strength of the obtained results consists
in their validity outside parametric classes of Archimedean copulas (for which the results are
much more straightforward to derive). Several additional examples and graphics illustrate
the chosen procedures and some underlying ideas.

2. Notation and preliminaries

In the sequel we will let Cd denote the family of all d-dimensional copulas for some
fixed integer d ≥ 3 and write vectors in bold symbols. For each copula C ∈ Cd the corre-
sponding d-stochastic measure will be denoted by µC , i.e., µC([0,x]) = C(x) for all x ∈ Id,
whereby [0,x] := [0, x1] × [0, x2] × . . . × [0, xd] and I := [0, 1]. To keep notation as simple
as possible we will frequently write x1:m = (x1, . . . , xm) for x ∈ Id and m ≤ d. Con-
sidering 1 ≤ i < j ≤ d, the i-j-marginal of C will be denoted by Cij, i.e., we have
Cij(xi, xj) = C(1, . . . , 1, xi, 1, . . . , 1, xj, 1, . . . , 1). In order to keep notation as simple as
possible for every m < d the marginal copula of the first m coordinates will be denoted
by C1:m, i.e., C1:m(x1, x2, . . . , xm) = C(x1, x2, . . . , xm, 1, . . . , 1). Considering the uniform
metric d∞ on Cd it is well-known that (Cd, d∞) is a compact metric space and that in Cd
pointwise and uniform convergence are equivalent. For more background on copulas and
d-stochastic measures we refer to [3, 21].

For every metric space (S, d) the Borel σ-field on S will be denoted by B(S) and P(S)
denotes the family of all probability measures on B(S). The Lebesgue measure on B(Id) will
be denoted by λ or (whenever particular emphasis to the dimension d is required) by λd.
Furthermore δx denotes the Dirac measure in x ∈ S. Given another metric space (S ′, d′), a
Borel-measurable transformation T : S → S ′ and some ϑ ∈ P(S) the push-forward of ϑ via
T will be denoted by ϑT , i.e., ϑT (F ) = ϑ(T−1(F )) for all F ∈ B(S ′).

In what follows Markov kernels will play a prominent role. Markov kernels are well
known from the context of Markov chains in discrete time, but they are also key for
describing the extent of dependence of a random vector Y on another random vector
X. More precisely, given a (d − m)-dimensional random vector Y and an m-dimensional
random vector X on a probability space (Ω,A,P) we are interested in the conditional
distributions PY|X=x of Y given X = x even if P(X = x) = 0 holds since - intuitively
speaking - the more ‘different’ the marginal distribution PY of Y and the conditional
distributions PY|X=x of Y given X = x (for ‘many’ x ∈ Rm) the more information on Y
is gained by knowing X. If Y and X are independent then X provides no information
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on Y and we have PY = PY|X=x. The direct opposite is the case of so-called complete
dependence describing the situation in which PY|X=x is degenerated for PX-almost every
x, implying that P(Y = h ◦ X) = 1 holds for some measurable function h : Rm → Rd−m,
i.e., knowing X means knowing Y. Considering that the afore-mentioned conditional
distributions are formally Markov kernels triggered the seemingly natural idea introduced
in [25] and extended in [9] (and the references therein) to quantify dependence as average
distance of the conditional distributions to the marginal distribution.

Formally speaking, an m-Markov kernel from Rm to Rd−m is a mapping K : Rm ×
B(Rd−m) → I fulfilling that for every fixed E ∈ B(Rd−m) the mapping x 7→ K(x, E) is
B(Rm)-B(Rd−m)-measurable and for every fixed x ∈ Rm the mapping E 7→ K(x, E) is a
probability measure on B(Rd−m). Given Y and X as above we call a Markov kernel K(·, ·)
a regular conditional distribution of Y given X if for every fixed E ∈ B(Rd−m) the identity

K(X(ω), E) = E(1E ◦Y|X)(ω)

holds for P-almost every ω ∈ Ω. In this case we have K(x, E) = P(Y ∈ E |X = x)
for every E ∈ B(Rd−m) and PX-almost every x ∈ Rm. It is well-known that for each
pair of random vectors (X,Y) as above, a regular conditional distribution K(·, ·) of Y
given X exists and is unique for PX-almost all x ∈ Rm. In case (X,Y) has C ∈ Cd as
distribution function (restricted to Id) we let KC : Im × B(Id−m) → I denote (a version
of) the regular conditional distribution of Y given X and simply refer to it as m-Markov
kernel of C. Defining the x-section Gx of a set G ∈ B(Id) w.r.t. the first m coordinates by
Gx := {y ∈ Id−m : (x,y) ∈ G} ∈ B(Id−m) the well-known disintegration theorem implies

µC(G) =

∫
Im
KC(x, Gx) dµC1:m(x). (2.1)

It is well-known that the disintegration theorem also holds for general finite measures in
which case the conditional measures K(·, ·) are not necessarily probability measures but
general finite measures (sub- or super Markov kernels). For more background on conditional
expectation and disintegration we refer to [11, Section 5] and [16, Section 8].

An Archimedean generator ψ is a continuous, non-increasing function ψ : [0,∞) → [0, 1]
fulfilling ψ(0) = 1, limz→∞ ψ(z) = 0 =: ψ(∞) and being strictly decreasing on the interval
[0, inf{z ∈ [0,∞] : ψ(z) = 0}] (with the convention inf ∅ := ∞). For every Archimedean
generator ψ we will let φ : [0, 1] → [0,∞] denote its pseudo-inverse defined by φ(y) :=
inf{z ∈ [0,∞] : ψ(z) ≥ y} = inf{z ∈ [0,∞] : ψ(z) = y} for every y ∈ [0, 1], where
the second equality holds since ψ is decreasing and continuous. Obviously φ is strictly
decreasing on [0, 1] and fulfills φ(1) = 0, moreover it is straightforward to verify that φ
is right-continuous at 0 (for a short discussion of this property see Section 4 in [13]). If
φ(0+) = ∞ (or, equivalently, if ψ(z) > 0 for every z ≥ 0), we refer to ψ (and φ) as strict
and as non-strict otherwise. A copula C ∈ Cd is called Archimedean (in which case we write
C ∈ Cdar) if there exists some Archimedean generator ψ with

Cψ(x) = ψ(φ(x1) + · · ·+ φ(xd))
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for every x ∈ Id. Following [20], Cψ(x) = ψ(φ(x1) + · · · + φ(xd)) is a d-dimensional copula
if, and only if, ψ is a d-monotone Archimedean generator on [0,∞), i.e., if, and only if, ψ
is an Archimedean generator fulfilling that (−1)d−2ψ(d−2) exists on (0,∞), is non-negative,
non-increasing and convex on (0,∞), whereby, as usual, g(m) denotes the m-th derivative
of a function g. Moreover (again see [20]) it is straightforward to verify that in the latter
case (−1)mψ(m) exists on (0,∞), is non-negative, non-increasing and convex on (0,∞) for
every m ∈ {0, . . . , d− 2}. In the following we will sometimes simply write C instead of Cψ
when no confusion may arise. Furthermore we will simply refer to Archimedean generators
as ‘generators’ and refer to Cψ as strict if ψ is strict.

Letting D−g and D+g denote the left- and right- hand derivative of a function g, re-
spectively, convexity of (−1)d−2ψ(d−2) implies that both, D−ψ(d−2)(z) and D+ψ(d−2)(z) exist
for every z ∈ (0,∞) and that the two derivatives coincide outside an at most countable set
(see [12, Theorem 3.7.4] and [22, Appendix C]) - in fact, for every continuity point z of
D−ψ(d−2) we have D−ψ(d−2)(z) = D+ψ(d−2)(z). Moreover, every d-monotone generator ψ
fulfills limz→∞ ψ(m)(z) = 0 for every m ∈ {0, . . . , d− 2} as well as limz→∞D−ψ(d−2)(z) = 0.
Indeed, limz→∞ ψ′(z) = 0 directly follows from monotonicity and convexity of ψ since d-
monotonicity implies that −ψ′ is decreasing and convex too; proceeding iteratively yields
the assertion. Notice that Lemma 5.4 yields an even simpler direct proof of this assertion.
In the sequel we will also use the fact that (again by convexity, see [12, Theorem 3.7.4] and
[22, Appendix C]) we can reconstruct the generator ψ from its derivatives in the sense that
(m ∈ {1, . . . , d− 2})

ψ(m−1)(z) =

∫
[z,∞)

−ψ(m)(s) dλ(s), ψ(d−2)(z) =

∫
[z,∞)

−D−ψ(d−2)(s) dλ(s). (2.2)

In order to have a one-to-one correspondence between copulas and their generator we follow
[13] and from now on implicitly assume that all generators are normalized in the sense that
φ(1

2
) = 1, or equivalently, ψ(1) = 1

2
holds. Notice that this can always be achieved by

choosing a constant b > 0 with b φ(1
2
) = 1 (or, equivalently) ψ(b) = 1

2
and considering

φ̃(z) = bφ(z) and ψ̃(z) = ψ(bz), respectively.
According to [20], an Archimedean copula C ∈ Cdar is absolutely continuous if, and only

if, ψ(d−1) exists and is absolutely continuous on (0,∞). In this case a version of the density
c of C is given by

c(x) = 1(0,1)d(x)
d∏
i=1

φ′(xi) ·D−ψ(d−1)
(
φ(x1) + · · ·+ φ(xd)

)
. (2.3)

In the sequel we will use the handy consequence that lower dimensional marginals of
d-dimensional Archimedean copulas are absolutely continuous ([20, Proposition 4.1]).

In the following we will use the Clayton and the Gumbel families of Archimedean copulas
as accompanying examples illustrating the obtained theoretical results in a simple paramet-
ric setting. Recall that the class of all d-dimensional Clayton copulas CdCL consists of all

Archimedean copulas with generators ψ(z) = (θz + 1)−
1
θ , implying φ(t) = 1

θ
(t−θ − 1), for

θ > 0 and z ∈ [0,∞). Considering the afore-mentioned normalization property ψ(1) = 1
2

5



(to assure a one-to-one correspondence between the copula and its generator) we work with

the normalized generators ψ(z) = ((2θ − 1)z + 1)−
1
θ and φ(t) = t−θ−1

2θ−1
in the following.

The family of all d-dimensional Gumbel copulas CdGU contains all Archimedean copulas with

generators ψ(z) = exp(−z 1
α ) (hence φ(t) = (− log t)α ) for α ≥ 1 and z ∈ [0,∞). According

to our normalization assumption we will therefore work with ψ(z) = exp(− log(2)z
1
α ) and

φ(t) = (− log(t))α

log(2)α
in the sequel. Notice that both, generators of Clayton as well as generators

of Gumbel copulas are strict.

3. Markov kernel, mass distribution and Kendall distribution function of mul-
tivariate Archimedean copulas

In the proceedings contribution [14] the authors derive an explicit expression for (a
version of) the (d − 1)-Markov kernel of d-variate Archimedean copulas which, in turn,
allows to derive the well-known formulas for level-set mass and the Kendall distribution
function of d-variate Archimedean copulas in an alternative way. Considering that Markov
kernels are key for the rest of this paper we introduce a (slightly modified) version of the
Markov kernel considered in [14] and prove its properties in detail. Furthermore, we restate
the already known formulas for the Kendall distribution function and level-set mass, add a
new geometric interpretation, and, for the sake of completeness, include the corresponding
purely Markov kernel-based proofs in the Appendix.

For every t ∈ (0, 1] define the t-level set of C ∈ Cdar by
Lt :=

{
(x, y) ∈ Id−1 × I : C(x, y) = t

}
=

{
(x, y) ∈ Id−1 × I :

d−1∑
i=1

φ(xi) + φ(y) = φ(t)

}
(3.1)

and for t = 0 set

L0 :=
{
(x, y) ∈ Id−1 × I : C(x, y) = 0

}
=

{
(x, y) ∈ Id−1 × I :

d−1∑
i=1

φ(xi) + φ(y) ≥ φ(0)

}
. (3.2)

Subsequently we will work with the level sets of the (d − 1)-dimensional marginal of C
defined analogously and denote them by L1:d−1

t and L1:d−1
0 , respectively. As in the bivariate

setting (see [13]) we can define functions f t whose graph coincides with Lt for t ∈ (0, 1] and
with the boundary of L0 for t = 0: In fact, for t = 0 defining the function f 0 : Id−1 → I by

f 0(x) =

{
1 if x ∈ L1:d−1

0

ψ
(
φ(0)−

∑d−1
i=1 φ(xi)

)
if x ̸∈ L1:d−1

0

with the conventions ψ(∞) = 0 as well as ψ(u) = 1 for all u < 0 and for t ∈ (0, 1], defining
the upper t-cut of C1:d−1 by [C1:d−1]t = {x ∈ Id−1 : C1:d−1(x) ≥ t} and considering the
function f t : [C1:d−1]t → I given by

f t(x) := ψ

(
φ(t)−

d−1∑
i=1

φ(xi)

)
.
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yields the above-mentioned property. It is straightforward to verify that for x ̸∈ L1:d−1
0 and

y < f 0(x) we have (x, y) ∈ L0 and that for strict Archimedean copulas x ∈ L1:d−1
0 if, and

only if, M(x) = 0 where M denotes the d-dimensional minimum copula.

Theorem 3.1. Suppose that C ∈ Cdar has generator ψ. Then setting

KC(x, [0, y]) :=



1, M(x) = 1 or x ∈ L1:d−1
0

0, M(x) < 1,x ̸∈ L1:d−1
0 , y < f 0(x)

D−ψ(d−2)

(
d−1∑
i=1

φ(xi)+φ(y)

)

D−ψ(d−2)

(
d−1∑
i=1

φ(xi)

) , M(x) < 1,x ̸∈ L1:d−1
0 , y ≥ f 0(x)

(3.3)

yields (a version of) the (d− 1)-Markov kernel of C.

Proof. First notice that absolute continuity of C1:d−1 implies

0 = µC1:d−1(L1:d−1
0 ) = µC(L

1:d−1
0 × I).

so µC1:d−1(L1:d−1
0 ∪M−1({1})) = 0, so the first condition on the right hand side of equation

(3.3) only holds for a set of µC1:d−1-measure 0.
We start by showing that KC defined according to equation (3.3) is indeed a (d − 1)-

Markov kernel and then prove that it is a Markov kernel of C. Fix y ∈ I. Since measurability
of f 0 and D−ψ(d−2) are a direct consequence of the properties of ψ, using continuity of
φ yields measurability of the mapping x 7→ KC(x, [0, y]). Building upon that, applying
a standard Dynkin System argument (see [4, Theorem 2]) yields measurability of x 7→
KC(x, E) for every Borel set E ∈ B(I).
For x = 1 or fixed x ∈ L1:d−1

0 the map y 7→ KC(x, [0, y]) is obviously a univariate distribution
function. Considering x ̸∈ L1:d−1

0 , monotonicity and left-continuity of (−1)d−2D−ψ(d−2)

implies that y 7→ KC(x, [0, y]) is increasing and right-continuous. Moreover we obviously
have KC(x, [0, 1]) = 1, so y 7→ KC(x, [0, y]) is a univariate distribution function and it
remains to show that it is a (d− 1)-Markov kernel of C, i.e., that

C(x, y) =

∫
[0,x]

KC(s, [0, y])dµC1:d−1(s) (3.4)

holds for all x ∈ Id−1 and every y ∈ I.
The case y = 1 is trivial and for y = 0 we have that KC(x, {0}) = 0 for µC1:d−1-almost every
x, implying that equation (3.4) holds. For y ∈ (0, 1) considering that L1:d−1

0 is a µC1:d−1-null
set and using absolute continuity of µC1:d−1 yields (Υ := Id−1 \ L1:d−1

0 )
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I :=

∫
[0,x]∩Υ

KC(s, [0, y]) dµC1:d−1(s) =

∫
[0,x]∩Υ

KC(s, [0, y])c
1:d−1(s) dλ(s)

=

∫
Υ∩{t∈(0,1)d−1:y≥f0(t)}∩[0,x]

D−ψ(d−2)(
∑d−1

i=1 φ(si)+φ(y))

D−ψ(d−2)(
∑d−1

i=1 φ(si))

·
d−1∏
i=1

φ′(si)D
−ψ(d−2)

(
d−1∑
i=1

φ(si)

)
dλ(s)

=

∫
{t∈(0,1)d−1\L1:d−1

0 : y≥f0(t)}∩[0,x]
D−ψ(d−2)

(
d−1∑
i=1

φ(si) + φ(y)

)

·
d−1∏
i=1

φ′(si) dλ(s).

Notice that on the one hand, for s ̸∈ L1:d−1
0 we have y < f 0(s) if, and only if,

∑d−1
i=1 φ(si) +

φ(y) > φ(0), implying D−ψ(d−2)
(∑d−1

i=1 φ(si) + φ(y)
)

= 0, and, on the other hand, s ∈

L1:d−1
0 also yields D−ψ(d−2)

(∑d−1
i=1 φ(si) + φ(y)

)
= 0. Therefore in the strict and the non-

strict case we get

I =

∫
(0,x]\L1:d−1

0

D−ψ(d−2)

(
d−1∑
i=1

φ(si) + φ(y)

)
·
d−1∏
i=1

φ′(si) dλ(s)

=

∫
(0,x]∩(0,1)d−1

D−ψ(d−2)

(
d−1∑
i=1

φ(si) + φ(y)

)
·
d−1∏
i=1

φ′(si) dλ(s)

=

∫
(0,x1:d−2]

d−2∏
i=1

φ′(si)

∫
(0,xd−1]

φ′(sd−2)

·D−ψ(d−2)

(
d−1∑
i=1

φ(si) + φ(y)

)
dλ(sd−1)dλ(s1:d−2).

Hence, using change of coordinates together with the fact that ψ(m)(∞) = 0 holds for
m = 1, 2, . . . , d− 2 it follows that

I =

∫
(0,x1:d−2]

d−2∏
i=1

φ′(si) lim
∆→0

{
ψ(d−2)

(
d−2∑
i=1

φ(si) + φ(xd−1) + φ(y)

)

− ψ(d−2)

(
d−2∑
i=1

φ(si) + φ(∆) + φ(y)

)}
dλ(s1:d−2)

=

∫
(0,x1:d−2]

d−2∏
i=1

φ′(si)ψ
(d−2)

(
d−2∑
i=1

φ(si) + φ(xd−1) + φ(y)

)
dλ(s1:d−2).
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Proceeding analogously d− 3 times finally yields

I =

∫
(0,x1]

φ′(s1)ψ
′ (φ(s1) + φ(x2) + · · ·+ φ(xd−1) + φ(y)) dλ(s1)

= ψ

(
d−1∑
i=1

φ(xi) + φ(y)

)
= C(x, y)

as desired.

Remark 3.2. Note that our Markov kernel in equation (3.3) is a slightly modified version
of the one considered in [14] and constructed in order to keep notation as simple as possible.
Contrary to [14] we merged the cases where the Markov-kernel is equal to 1 and directly
work with the full level set Ld−1

0 instead of considering the interior intLd−1
0 .

Remark 3.3. As mentioned in the proof above µC1:d−1(L1:d−1
0 ) = 0, implying that in the

first line in equation (3.3) we could substitute the univariate distribution function y 7→ 1 by
any other univariate distribution function F fulfilling F (1) = 1.

Remark 3.4. It also seems feasible to consider m-kernels for m ∈ {2, . . . , d − 2} instead
of (d − 1)-kernels, i.e., to condition on m instead of d − 1 coordinates. As shown by the
subsequent results, however, although (d-1)-kernels involve the highest derivatives of the
generator they are easy to handle and provide various new results, particularly with respect
to the interplay with the Williamson transform as discussed in Section 5.

Example 3.5 (Clayton and Gumbel families, cont.). We first derive the Markov-kernel of
a three-dimensional Clayton copula C ∈ C3

CL with parameter θ > 0. Strictness implies
that the zero level set of the marginal copula C1:2 is given by L1:2

0 = ({0} × I) ∪ (I × {0})
and that f 0(x1, x2) = 0 holds for all (x1, x2) /∈ L1:2

0 . Calculating the derivatives of ψ and
applying Theorem 3.1 yields that (we will write KC(x1, x2, ·) instead of KC((x1, x2), ·) to
keep notation simple)

KC(x1, x2, [0, y]) =

1, M(x1, x2) = 1 or (x1, x2) ∈ L1:2
0

(x−θ
1 +x−θ

2 +y−θ−2)−
1
θ
−2

(x−θ
1 +x−θ

2 −1)−
1
θ
−2

, M(x1, x2) < 1, (x1, x2) /∈ L1:2
0 .

Turning towards the Gumbel family consider that C ∈ C3
GU with parameter α ≥ 1. Calcu-

lating the second derivative yields

ψ′′(z) =

((
1

α
− 1

α2

)
+

1

α2
z

1
α log(2)

)
log(2)z

1
α
−2 exp(− log(2)z

1
α )

for z > 0 and we get

KC(x1, x2, [0, y]) =

{
1, M(x1, x2) = 1 or (x1, x2) ∈ L1:2

0
A(x1,x2,y)
A(x1,x2,1)

, M(x1, x2) < 1, (x1, x2) /∈ L1:2
0 ,

9



where A is given by

A(x1, x2, y) =

((
1

α
− 1

α2

)
+

1

α2
((− log(x1))

α + (− log(x2))
α + (− log(y))α)

1
α

)
((− log(x1))

α + (− log(x2))
α + (− log(y))α)

1
α
−2

exp
(
− ((− log(x1))

α + (− log(x2))
α + (− log(y))α)

1
α

)
.

Figure 1 depicts the conditional distribution functions y 7→ KC(x1, x2, [0, y]) and (x1, x2) =
(0.3, 0.7) for some Clayton and some Gumbel copulas.

0.00

0.25

0.50

0.75

1.00
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θ
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1
5
10
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Gumbel
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Figure 1: Conditional distribution functions y 7→ KC(x1, x2, [0, y]) for x1 = 0.3 and x2 = 0.7 of the Clayton
copula with parameter θ = 1

2 , θ = 1, θ = 5, θ = 10 (left panel) and of the Gumbel copula with parameter
α = 1, α = 2, α = 5, α = 10 (right panel) as considered in Example 3.5.

Utilizing Theorem 3.1 allows to derive the well-known formulas (see [20]) for the level
set masses and the Kendall distribution function of multivariate Archimedean copulas easily
via Markov kernels and disintegration (see Propositions Appendix A.1 and Appendix A.2
in the Appendix). In fact, for t ∈ (0, 1] the identity

µC(Lt) =
(−φ(t))d−1

(d− 1)!
·
(
D−ψ(d−2)(φ(t))−D−ψ(d−2)(φ(t−))

)
. (3.5)

can be shown. Moreover, if C is strict then µC(L0) = 0 and for non-strict C

µC(L0) = (−φ(0))d−1

(d−1)!
·D−ψ(d−2)(φ(0)) (3.6)

holds. Letting F d
K denote the Kendall distribution function of C, for t > 0 we have

F d
K(t) = D−ψ(d−2)(φ(t))

(−1)d−1

(d− 1)!
φ(t)d−1 +

d−2∑
k=0

ψ(k)(φ(t))
(−1)k

k!
φ(t)k. (3.7)

10



Moreover for t = 0 and strict C we have F d
K(0) = 0, and for non-strict C

F d
K(0) = D−ψ(d−2)(φ(0)) · (−1)d−1

(d− 1)!
· φ(0)d−1. (3.8)

holds.

Example 3.6 (Clayton and Gumbel families, cont.). We calculate the level set masses
and the Kendall distribution function for the Clayton and Gumbel families. Obviously
generators ψ of Clayton/Gumbel copula are twice continuously differentiable on (0,∞), so

µC(Lt) = 0

holds for every C ∈ C3
CL ∪ C3

GU and arbitrary t ∈ (0, 1]. Furthermore, strictness implies

µC(L0) = 0.

Having that, for C ∈ C3
CL the Kendall distribution function F 3

K is given by

F 3
K(t) = ψ(φ(t))− ψ′(φ(t))φ(t) +

1

2
ψ′′(φ(t))φ(t)2

= t+ (t−θ − 1)t1+θ 1
θ

[
1
2
(1 + 1

θ
)(1− tθ) + 1

]
for t > 0 and for t = 0 we have F 3

k (0) = 0. Analogously, for C ∈ C3
GU we obtain

F 3
K(t) = ψ(φ(t))− ψ′(φ(t))φ(t) +

1

2
ψ′′(φ(t))φ(t)2

= t+
t log(t)(log(t) + 1− 3α)

2α2

as well as F 3
K(0) = 0. Figure 2 depicts some Kendall distribution functions of Clayton and

Gumbel copulas.

Remark 3.7. In the bivariate setting it is well-known that the formula for the level set
masses can nicely be interpreted geometrically (see [4] and [21, Chapter 4.3]). In fact,
following [4], given a discontinuity b of D+φ we have

µC(Lb) = φ(b) ·
(

1

D−φ(b)
− 1

D+φ(b)

)
,

i.e., µC(Lb) corresponds to the length of the line segment on the x-axis generated by the
left-hand and right-hand tangents of φ at b (see Figure 1 in [4]). Translating from φ and
x-axis to ψ and y-axis yields as special case of equation (3.5)

µC(Lb) = φ(b) ·
(
D−ψ(φ(b))−D−ψ(φ(b−))

)
.

To establish the multivariate geometric analogue, rather than tangent lines we can con-
sider the left and right hand Taylor polynomials of ψ of order d− 1 at a ∈ [0,∞), i.e.,

T±
d−1ψ(z, a) := D±ψ(d−2)(a) · (z − a)d−1

(d− 1)!
+

d−2∑
k=0

ψ(k)(a) · (z − a)k

k!
.

11



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Clayton

θ
0.5
1
5
10

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Gumbel

α
1
2
5
10

Figure 2: Kendall distribution function F 3
K of a Clayton copula for parameters θ = 1

2 , θ = 1, θ = 5, θ = 10
(left panel) and of a Gumbel copula for parameters α = 1, α = 2, α = 5, α = 10 (right panel).

Having that yields

T−
d−1ψ(0, φ(t)) = D−ψ(d−2)(φ(t))

(−1)d−1φ(t)d−1

(d− 1)!
+

d−2∑
k=0

ψ(k)(φ(t))
(−1)kφ(t)k

k!

= F d
K(t)

and (3.5) reduces to

µC(Lt) = T−
d−1ψ(0, φ(t))− T+

d−1ψ(0, φ(t)) = F d
K(t)− F d

K(t−),

i.e., the t-level set mass corresponds to the difference of y-intercepts of the left and right
hand Taylor polynomials of ψ of order d − 1 at φ(t). Panel 2 of Figure 3 in Example 3.8
illustrates this interpretation for d = 3.

Example 3.8. We construct an Archimedean generator ψ inducing some Cψ ∈ C3
ar with z0 =

1 being a discontinuity point of (D−ψ′) and provide a geometric interpretation of µC(Lz0)
in terms of ψ. As depicted in the left panel of Figure 3 we start with some non-negative,
convex and decreasing function (−1)ψ̃′ (gray) with D+ψ̃′(z0) ̸= D−ψ̃′(z0). Considering

ψ̃(z) :=

∫
[z,∞)

(−1)ψ̃′(s) dλ(s)

as well as setting ψ(z) = ψ̃(z)/ψ̃(0) yields a generator of a three-dimensional Archimedean
copula Cψ (gray curve in the right panel). The length of the vertical red line segment formed
by the left and right hand Taylor polynomials of order 2 at z0 (right panel) coincides with
µC(Lz0).
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Figure 3: Stepwise construction of a non-strict 3-monotone Archimedean generator and geometric interpre-
tation of the z0-level set mass in terms of the vertical red line segment formed by the two Taylor parabolas
in z0 as considered in Example 3.8.

4. Characterizing pointwise convergence in Cd
ar and the interrelation with weak

conditional convergence

In [2, Section 6] it was shown that within the class of bivariate Archimedean copulas
pointwise convergence and weak conditional convergence (defined as weak conditional con-
vergence of λ-almost all conditional distributions) are equivalent. Moreover, it was shown
that in the general bivariate setting, weak conditional convergence implies pointwise con-
vergence not necessarily vice versa. We now tackle the question whether analogous results
hold in the general d ≥ 3-dimensional setting. Considering that - contrary to the bivariate
case d = 2 - for two copulas A,B ∈ Cd we do not necessarily have A1:d−1 = B1:d−1 we first
need to discuss potential extensions of the notion of weak conditional convergence to Cd.

The seemingly most natural approach would be to say that a sequence (An)n∈N of d-
dimensional copulas converges weakly conditional to A ∈ Cd if, and only if, there exists a set
Λ with µA1:d−1(Λ) = 1 such that for every x ∈ Λ the sequence (KAn(x, ·))n∈N of probability
measures on B(I) converges weakly to the probability measure KA(x, ·). As pointed out in
[9], however, for A,B ∈ Cd we might even have that A1:d−1, B1:d−1 (or, more precisely, the
measures µA1:d−1 , µB1:d−1) are singular with respect to each other, making it unreasonable
to compare KA(x, ·) and KB(x, ·) since they are only defined uniquely µA1:d−1-a.e. and
µB1:d−1-a.e., respectively (see [9, Example 4.10] for an illustration of this scenario).

As a consequence, the afore-mentioned natural concept of weak conditional convergence
does not yield a reasonable notion in full generality. For certain families of copulas such as
classes of copulas with identical marginals, or for Archimedean copulas, however, considering
weak conditional convergence does make sense. In fact, given C1, C2 ∈ Cdar we already know
that C1:d−1

1 and C1:d−1
2 are both not only absolutely continuous but according to equation

(2.3) the corresponding densities c1:d−1
1 , c1:d−1

2 fulfill c1:d−1
i (x) > 0 for every x outside of the

respective zero set L1:d−1
0 , so it can not happen that C1:d−1

1 and C1:d−1
2 are singular w.r.t.
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each other.
In what follows we will therefore work with the afore-mentioned notion of weak con-

ditional convergence in Cdar and prove the following main result of this section in several
steps:

Theorem 4.1. Suppose that C,C1, C2, . . . are d-dimensional Archimedean copulas with gen-
erators ψ, ψ1, ψ2, . . ., respectively. Then the following assertions are equivalent (Cont(g)
denotes the set of continuity points of a function g):

1. (Cn)n∈N converges uniformly to C.

2. (Ci:j
n )n∈N converges uniformly to Ci:j for all i, j ∈ {1, . . . , d} with i ̸= j.

3. (φn)n∈N converges pointwise to φ on (0, 1].

4. (ψn)n∈N converges uniformly to ψ on [0,∞).

5. (ψ
(m)
n )n∈N converges pointwise to ψ(m) on (0,∞) for every m ∈ {1, 2, . . . , d − 2} and

(D−ψ
(d−2)
n )n∈N converges pointwise to D−ψ(d−2) on the set Cont(D−ψ(d−2)).

6. (c1:mn )n∈N converges to c1:m λm-almost everywhere in Im for every m ∈ {2, 3, . . . , d−1}.

Furthermore, any of the six assertions implies weak conditional convergence of (Cn)n∈N to
C.

Obviously, assuming uniform convergence of (Cn)n∈N to C yields convergence of all
marginal copulas and, in particular, of the bivariate marginals. Thus, the equivalence of
(1), (2) and (3) follows directly from the results in the two-dimensional setting established
in [13].

Remark 4.2. Theorem 4.1 constitutes the natural extension of [13, Theorem 4.2] char-
acterizing uniform convergence within the space of bivariate Archimedean copulas. In the
multivariate setting, however, the afore-mentioned notion of weak conditional convergence
in Cdar is a consequence of rather than an equivalence to uniform convergence. Slightly mod-
ifying the notion and incorporating the marginal densities, however, an equivalence can be
established, see point (5) in Theorem 4.9 at the end of this section.

In what follows, we show the equivalence of the assertions (4), (5) and (6) and then
conclude the section by deriving weak conditional convergence in several steps. We start
with the following lemma clarifying the relationship between convergence of the generators
and their pseudo-inverses. The proof of an analogous result in the context of t-norms with
multiplicative generators can be found in [15, Theorem 8.14].

Lemma 4.3. Suppose that ψ, ψ1, ψ2, . . . are Archimedean generators with pseudo-inverses
φ, φ1, φ2, . . ., respectively. Then (φn)n∈N converges pointwise to φ on (0, 1] if, and only if,
(ψn)n∈N converges to ψ uniformly on [0,∞).

Proof. Defining

ψ̃(w) :=

{
ψ(−w) if w ≤ 0

1 otherwise
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yields a univariate distribution function ψ̃ on R whose pseudo-inverse (ψ̃)− : (0, 1] → R
coincides with−φ. Considering that weak convergence of distribution functions is equivalent
to weak convergence of their pseudo-inverses (see [26, Lemma 21.2]), using continuity of
the involved functions it directly follows that pointwise convergence of ψ̃n to ψ̃ on R is
equivalent to pointwise convergence of −φn to −φ on (0, 1] for n → ∞. In other words:
ψn → ψ pointwise on [0,∞) if, and only if, φn → φ pointwise on (0, 1]. Finally, uniform
convergence of ψ̃n to ψ̃ on R is a direct consequence of the fact that pointwise convergence of
a sequence of univariate distribution functions to a continuous distribution function implies
uniform convergence. Having that, obviously uniform convergence of (ψn)n∈N to ψ on [0,∞)
follows.

The next lemma focuses on convergence of the derivatives of the Archimedean generators.
Thereby we say that a sequence (fn)n∈N of real functions (fn)n∈N converges continuously to
f if for every sequence (xn)n∈N converging to x ∈ Cont(f) we have limn→∞ fn(xn) = f(x)
(cf. [17, Definition 3.18.1]).

Lemma 4.4. Suppose that C,C1, C2, . . . are d-dimensional Archimedean copulas with gen-
erators ψ, ψ1, ψ2, . . ., respectively. If (Cn)n∈N converges pointwise to C then for every
m ∈ {0, 1, 2, . . . , d− 2} we have

lim
n→∞

ψ(m)
n (z) = ψ(m)(z).

for every z ∈ (0,∞) and limn→∞D−ψ
(d−2)
n (z) = D−ψ(d−2)(z) for every z ∈ Cont(D−ψ(d−2)).

Moreover, in both situations the convergence is continuous, i.e., for every sequence (zn)n∈N in

(0,∞) converging to z ∈ Cont(D−ψ(d−2)) it holds that limn→∞D−ψ
(d−2)
n (zn) = D−ψ(d−2)(z).

Vice versa, if (ψ
(m)
n )n∈N converges pointwise to ψ(m) on (0,∞) for some m ∈ {1, 2, . . . , d−2}

then (Cn)n∈N converges pointwise to C and the same holds in case limn→∞D−ψ
(d−2)
n (z) =

D−ψ(d−2)(z) for every z ∈ Cont(D−ψ(d−2)).

Proof. We already know that pointwise convergence of (Cn)n∈N to C is equivalent to uniform
convergence of (ψn)n∈N to ψ on [0,∞). Convexity of generators implies that the sequence
(ψ′

n)n∈N converges pointwise to ψ′ on Cont(ψ′) = (0,∞) (see, e.g., [23, Theorem 25.7]).

Considering that (−1)mψ(m), (−1)mψ
(m)
1 , (−1)mψ

(m)
2 , . . . are convex functions for every m ∈

{1, . . . , d − 2} too, applying [23, Theorem 25.7], continuous convergence follows. The fact

that (D−ψ
(d−2)
n )n∈N converges continuously to D−ψ(d−2) on Cont(D−ψ(d−2)) is a consequence

of Lemma Appendix A.3 in the Appendix.
We prove the reverse implication only for the case d = 3 and assume that (D−ψ

(d−2)
n )n∈N

converges to D−ψ(d−2) on Cont(D−ψ(d−2)) since the analogous statement form ∈ {1, . . . , d−
2} follows in the same manner and the extension to arbitrary d ≥ 3 is obvious. For z ∈ [0,∞)
according to equation (2.2) we have

ψ(z) =

∫
[z,∞)

−ψ′(s)dλ(s) =

∫
[z,∞)

−
∫
[s,∞)

−D−ψ′(t)dλ(t)dλ(s)

=

∫
[z,∞)

∫
[s,∞)

D−ψ′(t)︸ ︷︷ ︸
≥0

dλ(t)dλ(s)
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and the same holds for every ψn. Using ψ(0) = ψn(0) = 1 we can interpret the functions
ιn, ι : ∆ → [0,∞), defined by

ιn(t, s) := D−ψ′
n(s), ι(t, s) := D−ψ′(s)

as probability densities on the measure space (∆,B(∆), λ2) with ∆ denoting the closed set
∆ := {(x, y) ∈ [0,∞)2 : y ≥ x}. By assumption, the sequence (ιn)n∈N converges λ2-almost
everywhere on ∆ to ι, so applying Scheffe’s theorem (or Riesz’ theorem, see [18]) yields

lim
n→∞

∫
∆

|ιn(t, s)− ι(t, s)|dλ2(t, s) = 0.

Hence, for an arbitrary z ∈ (0,∞) using the triangle inequality it follows that

|ψn(z)− ψ(z)| =
∣∣∣∣∫

[z,∞)

∫
[s,∞)

D−ψ′
n(t)−D−ψ′(t) dλ(t)dλ(s)

∣∣∣∣
≤
∫
∆∩[z,∞)2

|ιn(t, s)− ι(t, s)|dλ2(t, s) ≤
∫
∆

|ιn − ι|dλ2 → 0

for n→ ∞, which completes the proof.

Altogether we have already established the equivalence of the first five assertions in
Theorem 4.1 and it remains to show the equivalence of the sixth assertion, which is tackled
in the following lemma:

Lemma 4.5. Suppose that C,C1, C2, . . . are d-dimensional Archimedean copulas with gen-
erators ψ, ψ1, ψ2, . . ., respectively. Then pointwise convergence of (Cn)n∈N to C is equiv-
alent to pointwise convergence of (c1:mn )n∈N to c1:m almost everywhere in Im for some
m ∈ {2, 3, . . . , d− 1}.

Proof. We only prove the equivalence for m = d − 1 since considering the fact that
Cont(ψ(m)) = (0,∞) holds for m = 1, 2, . . . , d− 2 all other cases follow analogously.
First observe that the set

Γ :=

{
x ∈ (0, 1)d−1 :

d−1∑
i=1

φ(xi) ∈ Cont(D−ψ(d−2))

}
∈ B(Id−1)

has full Lebesgue measure in Id−1. In fact, considering Γc := (0, 1)d−1 \ Γ, applying disinte-
gration and writing x1:d−2 = (x1, x2, . . . , xd−2) yields

λd−1(Γ
c) =

∫
(0,1)d−2

λ((Γc)x1:d−2
) dλd−2(x1:d−2). (4.1)

For arbitrary x1:d−2 ∈ (0, 1)d−2 obviously the x1:d−2-cut (Γ
c)x1:d−2

of Γc fulfills

(Γc)x1:d−2
=

{
xd−1 ∈ (0, 1) :

d−1∑
i=1

φ(xi) ̸∈ Cont(D−ψ(d−2))

}
.
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Considering the fact that D−ψ(d−2) has at most countably infinitely many discontinuities
and that φ is strictly decreasing it follows that (Γc)x1:d−2

is at most countably infinite and
therefore has λ-measure 0. Applying equation (4.1) therefore directly yields λd−1(Γ

c) = 0,
implying λd−1(Γ) = 1.
In case limn→∞ d∞(Cn, C) = 0 holds, for x ∈ Γ applying Lemma 4.4 yields

lim
n→∞

c1:d−1
n (x) = lim

n→∞

d−1∏
i=1

φ′
n(xi) ·D−ψ(d−2)

n

(
d−1∑
i=1

φn(xi)

)

=
d−1∏
i=1

φ′(xi) ·D−ψ(d−2)

(
d−1∑
i=1

φ(xi)

)
= c1:d−1(x).

Conversely, almost everywhere convergence of (c1:mn )n∈N to c1:m implies almost everywhere
convergence of (c1:2n )n∈N to c1:2. Using Scheffé’s theorem we get that (C1:2

n )n∈N converges
pointwise to C1:2. Since convergence of bivariate Archimedean copulas is equivalent to
pointwise convergence of (φn)n∈N to φ applying Lemma 4.3 yields uniform convergence of
(ψn)n∈N to ψ and the assertion follows from the already established equivalence of the first
four assertions of Theorem 4.1.

Having proved the equivalence of the six conditions in Theorem 4.1 we now show that any
of these properties implies weak conditional convergence. Notice that for the case that the
(Archimedean) limit copula C is non-strict for every z > φ(0) we obviously have

lim
n→∞

(−1)d−2D−ψ(d−2)
n (z) = 0.

We now focus on ‘good’ x ∈ Id−1 and y ≥ f 0(x) and show convergence of the Markov kernels.
Notice that the subsequent lemma already establishes weak conditional convergence for the
case of a strict d-dimensional limit copula C.

Lemma 4.6. Suppose that C,C1, C2, . . . are d-dimensional Archimedean copulas with gener-
ators ψ, ψ1, ψ2, . . . and Markov kernels KC , KC1 , KC2 , . . ., respectively. If (Cn)n∈N converges
uniformly to C then there exists a set Λ ∈ B(Id−1) with µC1:d−1(Λ) = 1 such that for every
x ∈ Λ the following assertion holds: there is some set Ux ⊆ [f 0(x), 1] which is dense in
[f 0(x), 1] and which fulfills that for every y ∈ Ux

lim
n→∞

KCn(x, [0, y]) = KC(x, [0, y])

holds.

Proof. As shown in Lemma 4.5 the set

Γ =

{
x ∈ (0, 1)d−1 :

d−1∑
i=1

φ(xi) ∈ Cont(D−ψ(d−2))

}

satisfies λd−1(Γ) = 1. Considering µC1:d−1(Γ) =
∫
Γ
c1:d−1 dλd−1 = 1 it follows that Λ :=

Γ \ L1:d−1
0 fulfills µC1:d−1(Λ)=1. For fixed x ∈ Λ it follows by the same reasoning as in 4.5
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that

Ux :=

{
y ∈ [f 0(x), 1] :

d−1∑
i=1

φ(xi) + φ(y) ∈ Cont(D−ψ(d−2))

}

is of full λ-measure in [f 0(x), 1]. Fixing x ∈ Λ, y ∈ Ux and considering zn =
∑d−1

i=1 φn(xi)

and z =
∑d−1

i=1 φ(xi) as in Lemma 4.4, we have zn
n→∞−→ z. Moreover, using x ∈ Γ, it follows

that z =
∑d−1

i=1 φ(xi) ∈ Cont(D−ψ(d−2)), so applying Lemma 4.4 directly yields

D−ψ(d−2)
n

(
d−1∑
i=1

φn(xi)

)
n→∞−→ D−ψ(d−2)

(
d−1∑
i=1

φ(xi)

)
.

Analogously, using
∑d−1

i=1 φ(xi)+φ(y) ∈ Cont(D−ψ(d−2)) and applying Lemma 4.4 it follows
that

D−ψ(d−2)
n

(
d−1∑
i=1

φn(xi) + φn(y)

)
n→∞−→ D−ψ(d−2)

(
d−1∑
i=1

φ(xi) + φ(y)

)
which altogether shows

lim
n→∞

KCn(x, [0, y]) = lim
n→∞

D−ψ
(d−2)
n

(∑d−1
i=1 φn(xi) + φn(y)

)
D−ψ

(d−2)
n

(∑d−1
i=1 φn(xi)

)
=
D−ψ(d−2)

(∑d−1
i=1 φ(xi) + φ(y)

)
D−ψ(d−2)

(∑d−1
i=1 φ(xi)

) = KC(x, [0, y]).

It remains to show that we also have convergence for ‘good’ x and y < f 0(x) (only
relevant in the case of non-strict limit C.)

Lemma 4.7. Suppose that C,C1, C2, . . . are d-dimensional Archimedean copulas with gener-
ators ψ, ψ1, ψ2, . . . and Markov kernels KC , KC1 , KC2 , . . ., respectively. If (Cn)n∈N converges
uniformly to C then there exists a set Λ ∈ B(Id−1) with µC1:d−1(Λ) = 1 such that for all
x ∈ Λ we have

lim
n→∞

KCn(x, [0, y]) = 0 = KC(x, [0, y])

for every y ∈ [0, f 0(x)).

Proof. Obviously it suffices to consider non-strict C. Let Λ be as in the proof of Lemma
4.6 and fix x ∈ Λ and y ∈ (0, f 0(x)). Then, using the fact that ψ is invertible in φ(0) −∑d−1

i=1 φ(xi) and 0 < y < f 0(x) = ψ(φ(0)−
∑d−1

i=1 φ(xi), yields that
∑d−1

i=1 φ(xi)+φ(y) > φ(0)
and we have

lim
n→∞

d−1∑
i=1

φn(xi) + φn(y) =
d−1∑
i=1

φ(xi) + φ(y) > φ(0).
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Since D−ψ(d−2) is left continuous, considering
∑d−1

i=1 φ(xi)+φ(y) > φ(0) yield
∑d−1

i=1 φ(xi)+
φ(y) ∈ Cont(D−ψ(d−2)), so applying Lemma 4.4 (continuous convergence),

lim
n→∞

D−ψ(d−2)
n

(
d−1∑
i=1

φn(xi) + φn(y)

)
= D−ψ(d−2)

(
d−1∑
i=1

φ(xi) + φ(y)

)
= 0

as well as

lim
n→∞

D−ψ(d−2)
n

(
d−1∑
i=1

φn(xi)

)
= D−ψ(d−2)

(
d−1∑
i=1

φ(xi)

)
̸= 0

follows. Having this, according to equation (3.3) the desired identity limn→∞KCn(x, [0, y]) =
0 follows. Analogous arguments (or, simply using the fact that - by disintegration (2.1) -
for every d-dimensional copula C we have KC(x, {0}) = 0 for µC1:d−1-almost every x ∈ Id−1)
also apply in the case y = 0, so the proof is complete.

Remark 4.8. The proof of Lemma 4.7 is also applicable in dimension d = 2 and therefore
provides an alternative simpler version of the rather involved approach followed in [13].

Theorem 4.1 has the following straightforward consequence (analogous to the bivariate
statement considered in Theorem 4.2 in [13]):

Corollary 4.9. Suppose that C,C1, C2, . . . are d-dimensional Archimedean copulas with
generators ψ, ψ1, ψ2, . . ., respectively. Then the following assertions are equivalent:

1. (Cn)n∈N converges uniformly to C.

2. (φn)n∈N converges pointwise to φ on (0, 1].

3. (ψn)n∈N converges uniformly to ψ on [0,∞).

4. (ψ
(m)
n )n∈N converges pointwise to ψ(m) on (0,∞) for every m ∈ {1, 2, . . . , d − 2} and

(D−ψ
(d−2)
n )n∈N converges pointwise to D−ψ(d−2) on the set Cont(D−ψ(d−2)).

5. (Cn)n∈N converges weakly conditional to C and (c1:d−1
n )n∈N converges to c1:d−1 λd−1-

almost everywhere in Id−1.

Proof. We already know that the first four conditions are equivalent and that each of them
implies the fifth assertion. On the other hand, if the conditions in (5) hold, then we also
have λm-almost everywhere convergence of (c1:mn )n∈N to c1:m for every m ∈ {2, . . . , d − 2}
and applying Theorem 4.1 completes the proof.

The next example illustrates that convergences of the parameters of Clayton or Gum-
bel copulas implies assertions (1) − (6) in Theorem 4.1 and hence also weak conditional
convergence.

Example 4.10 (Clayton and Gumbel families, cont.). It is straightforward to see that both,
in the Clayton and in the Gumbel family, convergence of a sequence of parameters implies
uniform convergence of the corresponding generators on [0,∞) and pointwise convergence
of the corresponding pseudo-inverses. Considering, e.g., θ = 0.3 and θn = 0.3n+5

n
for every

n ∈ N as parameters of 3-dimensional Clayton copulas with normalized pseudo-inverses
φn(t) = t−θn−1

2θn−1
and φ(t) = t−θ−1

2θ−1
, then obviously limn→∞ θn = limn→∞

0.3n+5
n

= 0.3 = θ,
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so φn
n→∞−→ φ on (0, 1] and all assertions (1) − (6) in Theorem 4.1 and weak conditional

convergence follow. Convergence of the respective φn and ψn is illustrated in Figure 4.
Turning towards the Gumbel family and considering, e.g., αn = n

√
n for n ∈ N and α = 1

as parameters we obviously have limn→∞ αn = limn→∞
n
√
n = 1 = α implying φn

n→∞−→ φ.
Thus assertions (1)− (6) in Theorem 4.1 and weak conditional convergence hold. Figure 5
illustrates the corresponding functions φn and ψn.
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Figure 4: Generators of Clayton copulas; φ (black) and φn (left panel), ψ (black) and ψn (right panel) for
n = 5, n = 10, n = 100 and n = 1000 as considered in Example 4.10.
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Figure 5: Generators of Gumbel copulas; φ (black) and φn (left panel) ,ψ (black) and ψn (right panel) for
n = 5, n = 10, n = 100 and n = 1000 according to Example 4.10.
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5. Archimedean copulas and the Williamson transform

Following [24, Theorem 1.11], every d-monotone function can be represented via
the so-called Williamson transform of a unique probability measure on [0,∞). As a
consequence, we may describe and handle d-dimensional Archimedean copulas C = Cψ
in terms of their corresponding probability measure γ on [0,∞). In what follows we
first establish some complementary useful results describing the interrelation between
generator ψ and probability measures γ, express masses of level sets as well as the
Kendall distribution function handily in terms of γ, show that regularity properties of the
corresponding measure γ carry over to the Archimedean copula and prove the fact that
pointwise convergence of Archimedean copulas C1, C2, . . . to an Archimedean copula C is
equivalent to weak convergence of the corresponding probability measures γ1, γ2, . . . to the
probability measure γ. Based on these facts we then finally show that both, the family
of absolutely continuous and the family of singular Archimedian copulas is dense in (Cdar, d∞).

We start with recalling the following result (see [20] and [24, Theorem 1.11]) where we
write fm+ for the m-th power of the positive part f+ of a function f , i.e., fm+ := (f+)

m:

Theorem 5.1. Let ψ : [0,∞) → I be a function and d ≥ 2. Then the following two condi-
tions are equivalent:

(1) ψ is the generator of a d-dimensional Archimedean copula Cψ.

(2) There exists a unique probability measure γ on B([0,∞)) with γ({0}) = 0 such that

ψ(z) =

∫
[0,∞)

(1− tz)d−1
+ dγ(t) =: (Wdγ)(z), (5.1)

holds for every z > 0. In other words, ψ is the Williamson transform Wdγ of γ.

Obviously our assumed normalization property ψ(1) = 1
2
translates to∫

I
(1− t)d−1dγ(t) =

1

2
. (5.2)

In what follows we therefore only consider measures γ fulfilling equation (5.2), let PWd

denote the family of all these measures, i.e.,

PWd
=

{
γ ∈ P([0,∞)) : γ({0}) = 0 and

∫
I
(1− t)d−1dγ(t) =

1

2

}
(5.3)

and refer to PWd
as the family of all d-Williamson measures.

Again following [20] next we derive an explicit representation for the cumulative distri-
bution function of γ in terms of the Archimedean generator ψ:

Lemma 5.2. Let ψ be the generator of a d-dimensional Archimedean copula and γ ∈ PWd

its corresponding Williamson measure. Then

γ([0, z]) =
d−2∑
k=0

(−1)kψ(k)(1
z
)

k!

1

zk
+

(−1)d−1D−ψ(d−2)(1
z
)

(d− 1)!

1

zd−1
(5.4)

holds for every z > 0.
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Proof. Defining F : (0,∞) → I by F (z) := γ([0, z]) = γ((0, z]) according to [27]

F (z) =
d−1∑
k=0

(−1)kψ(k)(1
z
)

k!

1

zk
(5.5)

holds for every continuity point z of F , i.e., for every continuity point z of D−ψ(d−2). Set
Cont(D−ψ(d−2)) and define the function G : (0,∞) → I by

G(z) :=
d−2∑
k=0

(−1)kψ(k)(1
z
)

k!

1

zk
+

(−1)(d−1)D−ψ(d−2)(1
z
)

(d− 1)!

1

zd−1
.

Then the distribution function F and the right-continuous function G coincide on the set
Cont(D−ψ(d−2)) and since the latter is dense in (0,∞) equality F = G follows and the proof
is complete.

Example 5.3 (Clayton and Gumbel families, cont.). For the Clayton copulas we obtain
the following cumulative distribution function of the Williamson measure γ of C ∈ C3

CL with
parameter θ > 0 (see left panel in Figure 6):

γ([0, z]) = ψ(1
z
)−

ψ′(1
z
)

z
+
ψ′′(1

z
)

2z2

=

[
1 +

2θ − 1

θ(2θ − 1 + z)
+

(2θ − 1)2(1
θ
+ 1)

2θ(2θ − 1 + z)2

]
1

(2
θ−1
z

+ 1)
1
θ

,

Proceeding analogously, calculating the required derivatives of ψ yields the following
Williamson measure γ of C ∈ C3

GU with parameter α ≥ 1 (see right panel in Figure 6):

γ([0, z]) = ψ(1
z
)−

ψ′(1
z
)

z
+
ψ′′(1

z
)

2z2

=

[
1 +

log(2)z−
1
α

α
+

log(2)

2

((
1

α
− 1

α2

)
+

log(2)

α2
z−

1
α

)
z−

1
α

]
exp(− log(2)z−

1
α ).

The following lemma expresses D−ψ(d−2) (appearing both in the numerator and the
denominator of the Markov kernel KC(·, ·) in Theorem 3.1) in terms of γ and will be useful
in the sequel:

Lemma 5.4. Let ψ be the generator of a d-dimensional Archimedean copula and γ ∈ PWd

be the corresponding Williamson measure. Then

0 ≥ G(z) := (−1)d−2D−ψ(d−2)(z) = −(d− 1)!

∫
(0, 1

z
]

td−1dγ(t)

holds for every z > 0.
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Figure 6: Cumulative distribution function of the Williamson measure γ of the Clayton copula with the
parameter θ = 1

2 , θ = 1, θ = 5, θ = 10 (left panel) and of the Gumbel copula with parameter α = 1, α = 2,
α = 5, α = 10 (right panel).

Proof. According to [24, Theorem 1.11] we already know that for every z > 0 we have

(−1)d−2ψd−2(z) = (d− 1)!

∫
[0,∞)

td−2(1− zt)+dγ(t)

= (d− 1)!

∫
(0,∞)

td−2(1− zt)+dγ(t).

Since (−1)d−2ψd−2 is convex, the left hand derivative exists everywhere in (0,∞) and is
left-continuous. For fixed z > 0 considering the left-hand difference quotient

Qh(z) := (d− 1)!

∫
(0,∞)

td−2 (1− t(z + h))+ − (1− tz)+
h

dγ(t)

for h ∈ (−z, 0) we get

Qh(z) =
(d− 1)!

h

∫
( 1
z
, 1
z+h

)

td−2(1− t(z + h))dγ(t)

+
(d− 1)!

h

∫
(0, 1

z
]

td−2[(1− t(z + h))− (1− tz)]dγ(t)

=
(d− 1)!

h

∫
( 1
z
, 1
z+h

)

td−2(1− t(z + h))dγ(t)︸ ︷︷ ︸
=:Ih

−(d− 1)!

∫
[0, 1

z
]

td−1dγ(t),
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and it suffices to show that Ih converges to 0. Using the monotonicity and non-negativity
of the functions t 7→ td−2 and t 7→ 1− t(z + h) on (1

z
, 1
z+h

) it follows that

|Ih| ≤
1

|h|
1

(z + h)d−2

(
1− z + h

z

)
γ

((
1

z
,

1

z + h

))
=

1

(z + h)d−2 z
γ

((
1

z
,

1

z + h

))
from which the assertion follows immediately.

As first application of the previous lemma we characterize strictness in terms of the
Williamson measure γ:

Lemma 5.5. Suppose that C is an Archimedean copula with Williamson measure γ ∈ PWd
.

Then C is strict if, and only if the support of γ contains 0, i.e., if γ([0, r)) > 0 for every
r > 0.

Proof. If the support of γ contains 0 then obviously
∫
(0,r)

td−1dγ(t) > 0 for every r > 0,

hence applying Lemma 5.4 directly yields (−1)d−1D−ψ(d−2)(z) > 0 for every z > 0. Having
this, strictness of ψ follows immediately.
On the other hand, if there exists some r > 0 with γ([0, r)) = 0 then considering z0 =
1
2r

and again using Lemma 5.4 we have (−1)d−1D−ψ(d−2)(z0) = 0. Since the function
z 7→ (−1)d−1D−ψ(d−2)(z) is non-negative, non-increasing and left-continuous it follows that
(−1)d−1D−ψ(d−2)(z) = 0 holds for every z ≥ z0. Hence ψ(z0) = 0 and ψ is non-strict.

We now return to the formulas for the level set masses and the Kendall distribution
function of Archimedean copulas as already mentioned in Section 3 and reformulate them
elegantly in terms of the Williamson measure γ. Although surprising, to the best of the
authors’ knowledge these formulas seem to be new:

Theorem 5.6. Let C be a d-dimensional Archimedean copula with generator ψ and William-
son measure γ. Then (compare with equations (3.5) - (3.7)):

µC(Lt) = γ({ 1
φ(t)

}), t ∈ (0, 1] (5.6)

holds for every t ∈ (0, 1] and every C. Furthermore, for strict C we have µC(L0) = 0, and
for non-strict C

µC(L0) = γ({ 1
φ(0)

}). (5.7)

holds. Finally, the Kendall distribution function F d
K of C fulfills

F d
K(t) = γ([0, 1

φ(t)
]) (5.8)

for every t ∈ (0, 1].
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Proof. First of all notice that the expression for the Kendall distribution function follows
immediately from equation (5.4). Furthermore for t ∈ (0, 1] considering

µC(Lt) = F d
K(t)− F d

K(t−)

equation (5.6) follows immediately from equation (5.8). Finally, using equation (3.6) and
incorporating Lemma 5.4 yields

µC(L0) =
(−1)d−1(φ(0))d−1

(d− 1)!
D−ψ(d−2)(φ(0)) = φ(0)d−1

∫
(0, 1

φ(0)
]

td−1dγ(t).

Since equation (5.1) implies that for every z0 > 0 we have that ψ(z0) = 0 is equivalent to
γ((0, 1

z0
)) = 0, the right-hand side of the last equation simplifies to γ({ 1

φ(0)
}) and the proof

is complete.

Remark 5.7. Notice that equation (5.8) implies F d
K(

1
2
) = γ([0, 1]). More importantly, the

(probably most) famous conjecture in the context of Archimedean copulas, saying that for
every fixed d ≥ 3 two Archimedean copulas C,D ∈ Cdar are identical if, and only if their
Kendall distribution functions coincide (see [7] and [8]) would follow if it could be shown
that the mapping assigning each Williamson measure γ the function Fγ : I → I, defined by

Fγ(t) = γ

([
0,

1

φγ(t)

])
is injective, where φγ denotes the pseudo-inverse of the generator ψ = Wd γ.

Example 5.8. The probability measure γ = 7
8
δ1/4 +

1
8
δ3/4 obviously fulfills γ ∈ PW3 . The

induced generator ψ is given by

ψ(z) :=


1− 5z

8
+ z2

8
if z < 4

3
7
8

(
1− z

4

)2
if z ∈

[
4
3
, 4
]

0 otherwise

and it is straightforward to verify that φ( 7
18
) = 4

3
and φ(0) = 4 holds. Using Theorem 5.6

therefore yields µC(L0) = 7
8
as well as µC(L7/18) = 1

8
. Figure 7 depicts the distribution

function z 7→ γ([0, z]) of γ (left panel), the induced generator ψ (middle) and the sets L0

and L7/18 carrying the mass (right panel).

The next result complements Theorem 4.1 and adds a seventh equivalent condition
in terms of the corresponding Williamson measures. During the process of preparing this
manuscript it has been brought to our attention that this very result was already established
in [1]. Considering that the result is key especially for the subsequent regularity results and
that the subsequent proof is simpler and less technical than the one given in [1] we include
it for the sake of completeness.

Theorem 5.9. Suppose that C,C1, C2, . . . are d-dimensional Archimedean copulas with gen-
erators ψ, ψ1, ψ2, . . . and let γ, γ1, γ2, . . . denote the corresponding Williamson measures.
Then the following assertions are equivalent:
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Figure 7: Distribution function of γ (left panel), induced generator ψ (middle) and the sets L0 and L7/18

(right panel) as considered in Example 5.8.

(1) (Cn)n∈N converges uniformly to C.

(2) (γn)n∈N converges weakly on [0,∞) to γ.

Proof. According to Theorem 4.1 the first assertion is equivalent to uniform convergence of
(ψn)n∈N to ψ. (i) If (γn)n∈N converges weakly to γ, then applying Theorem 5.1 and using
the fact that the function t 7→ (1− tz)d−1

+ is continuous and bounded

ψn(z) =

∫
[0,∞)

(1− tz)d−1
+ dγn(t)

n→∞−→
∫
[0,∞)

(1− tz)d−1
+ dγ(t) = ψ(z)

follows for every fixed but arbitrary z ∈ [0,∞). (ii) Vice versa, using Lemma 5.2 and Lemma
4.4 and considering z ∈ (0,∞) with 1

z
∈ Cont(D−ψ(d−2)) yields

lim
n→∞

γn([0, z]) = lim
n→∞

d−2∑
k=0

(−1)kψ
(k)
n (1

z
)

k!
z−k +

(−1)d−1D−ψ
(d−2)
n (1

z
)

(d− 1)!
z−d+1

=
d−2∑
k=0

(−1)kψ(k)(1
z
)

k!
z−k +

(−1)d−1D−ψ(d−2)(1
z
)

(d− 1)!
z−d+1

= γ([0, z]).

This completes the proof since, firstly, (0, 1) \Cont(D−ψ(d−2)) is at most countably infinite
and, secondly, convergence of distribution functions on a dense set implies weak convergence.

Example 5.10 (Clayton and Gumbel families, cont.). We illustrate Theorem 5.9 by consid-
ering the special situation of three-dimensional Gumbel and Clayton copulas: Considering
θ = 0.3 as well as θn = 0.3n+5

n
for every n ∈ N, and using that θn

n→∞−→ θ yields that the
induced three-dimensional Clayton copulas Cn converge uniformly to C. Therefore, accord-
ing to Theorem 5.9 we have weak convergence of the corresponding Williamson measures
γn to γ (see right panel of Figure 8). Analogously, for αn = n

√
n and α = 1 we have uniform
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convergence of the associated three-dimensional Gumbel copulas Cn to C and thus weak
convergence of the corresponding Williamson measures γn to γ (see right panel in Figure
9).
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Figure 8: Generators and cumulative distribution functions of the Williamson measures of Clayton copulas;
ψ (black) and ψn (left panel) and γ (black) and γn (right panel) for n = 5, n = 10, n = 100 and n = 1000
as considered in Example 5.10.

We now focus on studying how regularity/singularity properties of the Williamson mea-
sure carries over to regularity/singularity properties of the corresponding copula Cγ ∈ Cdar
and first recall some basic notation. For every m ∈ {1, . . . , d} we say that a finite mea-
sure ϑ on B(Im) is singular (with respect to λm) if there exists some G ∈ B(Im) fulfilling
ϑ(G) = ϑ(Im) and λd(G) = 0. A copula C ∈ Cm is called singular if the corresponding
m-stochastic measure µC is singular.

For the bivariate setting singularity of a copula C is equivalent to singularity of λ-almost
all conditional distributionsKC(x, ·) (see Lemma 1 in [5]). A a fully analogous statement can
not hold in general for arbitrary d ≥ 3 - in fact, for example the copula C of a random vector
(X,X, Y ) with X, Y being independent and uniformly distributed on [0, 1] is obviously
singular but µC1:2 = µM -almost every conditional distribution KC(x, x, ·) coincides with λ
and therefore is absolutely continuous. Assuming, however, absolute continuity of C1:d−1 as
it is the case for every C ∈ Cdar, an analogue of the bivariate result remains valid:

Lemma 5.11. Let C be a d-dimensional copula such that C1:d−1 is absolutely continuous.
Then C is singular if, and only if there exists some set Λ ∈ B(Id−1) fulfilling µC1:d−1(Λ) = 1
such that KC(x, ·) is singular for every x ∈ Λ.

Proof. If C ∈ Cd is singular then by definition there exists some set G ∈ B(Id) fulfilling
µC(G) = 1 as well as λd(G) = 0. Disintegration (see equation (2.1)) therefore yields the
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Figure 9: Generators and cumulative distribution functions of the Williamson measures of Gumbel copulas;
ψ (black) and ψn (left panel) and γ (black) and γn (right panel) for n = 5, n = 10, n = 100 and n = 1000
according to Example 5.10.

existence of some set Λ1 ∈ B(Id−1) with µC1:d−1(Λ1) = 1 such that KC(x, Gx) = 1 holds for
all x ∈ Λ1. Moreover, again by applying disintegration, we have

0 = λd(G) =

∫
Id−1

λ1(Gx)dλd−1(x),

so there exists some set Λ2 ∈ B(Id−1) fulfilling with λd−1(Λ2) = 1 such that for all x ∈ Λ2

we have λ1(Gx) = 0. Since for every set G ∈ B(Id−1) with λd−1(G) = 1 we also have
µC1:d−1(G) = 1, setting Λ := Λ1 ∩ Λ2 yields µC1:d−1(Λ) = 1 and it follows that for every
x ∈ Λ the x-cut Gx of G fulfills KC(x, Gx) = 1 as well as λ(Gx) = 0. In other words,
KC(x, ·) is singular and the first implication is proved.
The reverse implication can be proved as follows. We show the contraposition and assume
that µC is not singular with respect to λd, i.e., the absolutely continuous part µabsC of the
Lebesgue decomposition µC = µabsC + µsingC of µC with respect to λd is non-degenerated in
the sense that µabsC (Id) > 0 holds. Let G ∈ B(Id−1) with λd−1(G) = 0 be arbitrary but fixed.
Then obviously

(µsingC )1:d−1(G) = µsingC (G× I) ≤ µC(G× I) = µ1:d−1
C (G) =

∫
G

c1:d−1(x)dλd−1(x) = 0,

so there exists a Radon-Nikodym derivative f : Id−1 → [0,∞) of (µsingC )1:d−1 with respect to
λd−1. Letting k : Id → [0,∞) denote the Radon-Nikodym derivative of µabsC with respect to
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λd, for arbitrary E ∈ B(Id−1), F ∈ B(I) we get∫
E

KC(x, F )c
1:d−1(x)dλd−1(x) =

∫
E

KC(x, F )dµC1:d−1(x)

= µC(E × F ) = µabsC (E × F ) + µsingC (E × F )

=

∫
E

[∫
F

k(x, y)dλ(y)

]
dλd−1(x) +

∫
E

Hsing(x, F )d(µsingC )1:d−1(x)

=

∫
E

[∫
F

k(x, y)dλ(y)

]
dλd−1(x) +

∫
E

Hsing(x, F )f(x)dλd−1(x)

=

∫
E

[∫
F

k(x, y)dλ(y) +Hsing(x, F )f(x)

]
dλd−1(x),

where in the third line we used the disintegration theorem for arbitrary finite measures and
Hsing(x, ·) denotes the conditional measure (sub- or super Markov kernel) of µsingC given x.
Since E ∈ B(Id−1) it follows that

KC(x, F )c
1:d−1(x) =

∫
F

k(x, y)dλ(y) +Hsing(x, F )f(x)

holds for λd−1-almost every x ∈ Id−1. Using the fact that µ1:d−1
C is absolutely continuous

and that obviously µC1:d−1({x ∈ Id−1 : c1:d−1(x) = 0}) = 0 yields the identity

KC(x, F ) =

∫
F

k(x, y)

c1:d−1(x)
dλ(y) +Hsing(x, F )

f(x)

c1:d−1(x)

for µC1:d−1-almost every x ∈ Id−1. Since µabsC is non-degenerated by assumption, there exists
a set Υ ∈ B(Id−1) with c1:d−1(x) > 0 for every x ∈ Υ and µC1:d−1(Υ) > 0 such that for every

x ∈ Υ the absolutely continuous measure F 7→
∫
F

k(x,y)
c1:d−1(x)

dλ(y) is non-degenerated. This

shows that for such x the measureKC(x, ·) can not be singular and the proof is complete.

Following [19] every Markov kernel KC(·, ·) : Id−1 × B(I) → I can be decomposed into
the sum of three sub- Markov kernels from I to B(I) as

KC(x, ·) = Kdis
C (x, ·) +Ksing

C (x, ·) +Kabs
C (x, ·), (5.9)

whereby each measure Kdis
C (x, ·) is discrete, each Ksing

C (x, ·) is singular and has no point
masses and Kabs

C (x, ·) is absolutely continuous on B(I). Again assuming absolute continuity
of C1:d−1 and letting c1:d−1 denote the corresponding density in what follows we will refer
to the three measures µdisC , µsingC , µabsC , defined via disintegration by

µdisC (G) =

∫
Id−1

Kdis
C (x, Gx)c

1:d−1(x)dλd−1(x)

µsingC (G) =

∫
Id−1

Ksing
C (x, Gx)c

1:d−1(x)dλd−1(x) (5.10)

µabsC (G) =

∫
Id−1

Kabs
C (x, Gx)c

1:d−1(x)dλd−1(x)
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for every G ∈ B(I) as the discrete, the singular, and the absolutely continuous component
of µC .

We now show how singularity/regularity of γ carries over to the corresponding
Archimedean copula.

Theorem 5.12. Suppose that C ∈ Cdar has generator ψ and Williamson measure γ ∈ PWd
.

Then the following assertions hold:

(1) If γ is absolutely continuous then µabsC (Id) = 1, i.e., C is absolutely continuous.

(2) If γ is discrete then µdisC (Id) = 1.

(3) If γ is singular without point masses then µsingC (Id) = 1.

Proof. (i) The first assertion has already been established in [20] and can alternatively be
proved easily as follows: Suppose that γ is absolutely continuous with density f . Then
using Lemma 5.4 we have

(−1)d−2D−ψ(d−2)(z) = −(d− 1)!

∫
(0, 1

z
]

td−1f(t)dλ(t).

Considering that the right-hand side is obviously continuous in z it follows that ψ(d−1) exists
on the full interval (0,∞). Moreover, the right-hand side is easily seen to be absolutely
continuous, hence Proposition 4.2 in [20] yields absolute continuity of C.
For the proof of the remaining two assertions first notice that it suffices to consider x fulfilling
M(x) < 1 and x ̸∈ L1:d−1

0 . Additionally, in this case it holds that 0 <
∑d−1

i=1 φ(xi) < φ(0) ∈
(0,∞] as well as (−1)d−1D−ψ(d−2)

(∑d−1
i=1 φ(xi)

)
> 0. Moreover, assuming y ≥ f 0(x) using

Lemma 5.4 the Markov kernel KC(·, ·) according to equation (3.3) can be expressed as

KC(x, [0, y]) =
G
(∑d−1

i=1 φ(xi) + φ(y)
)

G
(∑d−1

i=1 φ(xi)
) =

∫
Iy
td−1dγ(t)∫

I1
td−1dγ(t)

(5.11)

with Iy =
(
0, 1∑d−1

i=1 φ(xi)+φ(y)

]
for every y ∈ I and G as in Lemma 5.4.

(ii) Suppose now that γ is discrete. Then there exist a1, a2, . . . ∈ (0,∞) and constants
α1, α2, . . . ∈ I with

∑∞
j=1 αj = 1 such that γ =

∑∞
j=1 αjδaj holds, and equation (5.11)

simplifies to

KC(x, [0, y]) =

∑
j:aj∈Iy a

d−1
j αj∑

j:aj∈I1 a
d−1
j αj

. (5.12)

Notice that we do not assume all αj to be greater than zero, so the case of finitely many point
masses is covered as well. Considering, firstly, that KC(x, [0, y]) = 0 for y < f 0(x) and that
the condition aj ∈ Iy is equivalent to y ≥ ψ( 1

aj
−
∑d−1

i=1 φ(xi)) the function y 7→ KC(x, [0, y])

can be written as
KC(x, [0, y]) =

∑
j : aj∈I1

βj1[ψ( 1
aj

−
∑d−1

i=1 φ(xi)),1]
(y)

30



with βj =
ad−1
j αj∑

l:al∈I1
ad−1
l αl

and therefore it

is easily seen to be the distribution function of the discrete probability measure on I
having point mass

ad−1
j αj∑

l:al∈I1
ad−1
l αl

in ψ( 1
aj

−
∑d−1

i=1 φ(xi)) for every j with aj ∈ I1. In other

words, KC(x, ·) is a discrete probability measure, so KC(x, ·) = Kdis
C (x, ·) holds for all x

fulfilling M(x) < 1 and x ̸∈ L1:d−1
0 . Having this and using equation (5.10) µdisC (Id) = 1

follows.
(iii) Finally suppose that γ is singular without point masses and again consider some x
fulfilling M(x) < 1 and x ̸∈ L1:d−1

0 . To show that µsingC (Id) = 1, we prove that the dis-
tribution function y 7→ FC

x (y) = KC(x, [0, y]) is continuous and has derivative 0 λ-almost
everywhere which is equivalent to singularity of the Markov-kernel KC(x, ·) with respect to
λ. According to Theorem 5.6 we have µC(Lt) = γ({ 1

φ(t)
}) = 0 for every t ∈ I, hence the

conditional distribution function FC
x has no point masses and therefore FC

x is continuous.
It now suffices to show that the derivative (FC

x )′ fulfills (FC
x )′(y) = 0 for λ-almost every

y > f 0(x), which can be done as follows: As already mentioned before, our choice of x
implies that 0 <

∑d−1
i=1 φ(xi) < φ(0) ∈ (0,∞], so in particular

1∑d−1
i=1 φ(xi)

>
1

φ(0)

and γ(I1) = γ((0, 1∑d−1
i=1 φ(xi)

]) > γ((0, 1
φ(0)

]) ≥ 0. Defining the measure m : B((0,∞)) →
[0,∞] by

m(B) :=

∫
B

td−1dγ(t)

it follows that m is σ-finite (in fact, finite for every finite interval), singular with respect to
λ, has no point masses and fulfills 0 < m(I1) < ∞. Letting Gm : I1 → [0,∞) denote the
measure-generating function induced by m via Gm(x) := m([0, x]) singularity of m implies
that G′

m = 0 λ-almost everywhere on (0,∞), hence considering

Λ := {z ∈ I1 : G
′
m(z) = 0}

yields λ(Λ) = λ(I1). Defining Υ by

Υ :=

{
y ∈ (f 0(x), 1] :

1∑d−1
i=1 φ(xi) + φ(y)

∈ Λ

}
∈ B(I),

using the fact that φ is differentiable and strictly decreasing on (0, 1) with derivative bounded
away from 0 on any compact interval [a, b] ⊆ (0, 1) it follows (see [12, Lemma 7.1.29]) that
λ(Υ) = λ((f 0(x), 1]). For every y ∈ Υ, however, the chain rule together with (5.11),
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Gm

(
1∑d−1

i=1 φ(xi)+φ(y)

)
=
∫
Iy
td−1dγ and m(I1) =

∫
I1
td−1dγ(t) yields that

(FC
x )′(y) =

1

m(I1)

d

dy
Gm

(
1∑d−1

i=1 φ(xi) + φ(y)

)

=
1

m(I1)
G′
m

(
1∑d−1

i=1 φ(xi) + φ(y)

)
︸ ︷︷ ︸

=0

· ∂
∂y

(
1∑d−1

i=1 φ(xi) + φ(y)

)
= 0.

Altogether we have shown that for arbitrary x fulfilling M(x) < 1 and x ̸∈ L1:d−1
0 the

measure KC(x, ·) is singular without point masses, i.e., KC(x, ·) = Ksing
C (x, ·) holds and

considering equation (5.10) again µsingC (Id) = 1 follows.

Remark 5.13. The second assertion of Theorem 5.12 can be proved in the following alter-
native way (the afore-mentioned version was chosen in order to underline the similarity of
the discrete and the singular case): Let γ =

∑
j∈J αjδaj for some finite or countably infinite

index set J ⊆ N where αj > 0 for every j ∈ J , and
∑

j∈J αj = 1 (without loss of generality
we assume ai ̸= aj for i ̸= j). Then for every j ∈ J there exists a unique tj ∈ [0, 1) with

1
φ(tj)

= aj and according to Theorem 5.6 we have

µC

(⋃
j∈J

Ltj

)
=
∑
j∈J

µC(Ltj) =
∑
j∈J

γ

({
1

φ(tj)

})
= 1.

The set L :=
⋃
j∈J Ltj is as at most countable union of Borel sets itself an element of B(Id).

Applying disintegration (2.1) we have

1 = µC(L) =

∫
Id−1

KC(x, Lx)dµC1:d−1(x),

from which KC(x, Lx) = 1 for µC1:d−1-almost every x follows. Considering that the x-cut
Lx of L is at most countably infinite we get Kdis

C (x, Lx) = 1 for µC1:d−1-almost every x from
which the desired result follows.

Theorem 5.12 has the following consequence, whereby we will let Cdar,abs denote the family

of all absolutely continuous d-dimensional Archimedean copulas, Cdar,dis the family of all

C ∈ Cdar with µdisC (Id) = 1, and Cdar,sing the family of all C ∈ Cdar with µ
sing
C (Id) = 1.

Corollary 5.14. Cdar,dis, Cdar,abs and Cdar,sing are dense in (Cdar, d∞).

Proof. Let C be an arbitrary Archimedean copula and γ denote its corresponding
Williamson measure on B([0,∞)). The stated results now follow from the fact (see Theorem
Appendix B.2) that γ is the weak limit of a sequence of discrete, of a sequence of absolutely
continuous and of a sequence of singular Williamson measures in combination with Theorem
5.9 and Theorem 5.12.
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6. Singular Archimedean copulas with full support

The results established in the previous section allow to prove the existence of multivariate
Archimedean copulas which, considering their handy analytic form, exhibit a surprisingly
irregular behavior. In fact, we will construct singular d-dimensional Archimedean copulas
with full support Id and thereby extend the examples given in [4] to the multivariate setting.
As in the previous section the representation in terms of Williamson measures will play a
crucial role. We first focus on the construction of some C ∈ Cdar fulfilling that C has full
support although µC1:d−1-almost every conditional distributionKC(x, ·) is a singular measure
without point masses and then discuss the discrete analogue.

Theorem 6.1. There exists a copula C ∈ Cdar with the following properties:

(1) µsingC (Id) = 1 and C has full support.

(2) For µC1:d−1-almost every x ∈ Id−1 the conditional distribution function y 7→
KC(x, [0, y]) is continuous, strictly increasing and singular.

(3) All level sets Lt of C fulfill µC(Lt) = 0.

(4) The Kendall distribution function F d
K of C is continuous, strictly increasing and sin-

gular.

Proof. Suppose that h is a strictly increasing singular homeomorphism of I, i.e., a strictly
increasing bijective transformation mapping I to itself fulfilling h′(x) = 0 for λ-almost every
x ∈ I (see, e.g., [6, 10] for several well-known examples). Defining F : [0,∞) → [0, 1] by

F (x) =
1

2
h
(x
2

)
1[0,2)(x) +

∞∑
i=1

(
1− 1

2i
+

1

2i+1
h

(
x− 2i

2i

))
1[2i,2i+1)(x)

obviously yields a strictly increasing continuous function F which, by construction, fulfills
F ′ = 0 λ-almost everywhere. Letting β denote the corresponding probability measure on
B([0,∞)) it follows that β is singular without point masses. Furthermore, the support of β
contains 0 but in general does not need to be an element of PWd

, we only know that∫
I
(1− t)d−1dβ(t) ∈ (0, 1).

Proceeding, however, like in the proof of Lemma Appendix B.1 we can find some con-
stant a ∈ (0,∞) such that the push-forward γ = βTa with Ta(x) = ax fulfills γ ∈ PWd

.
Considering that γ is obviously singular (without point masses) too and that the support
of γ coincides with [0,∞) using Lemma 5.5 as well as Theorem 5.12 it follows that the
corresponding d-dimensional Archimedean copula C = Cγ is strict and fulfills µsingCγ

(Id) = 1.

Furthermore, according to the proof of Theorem 5.12 for µC1:d−1-almost every x ∈ Id−1 the
conditional distribution function y 7→ KC(x, [0, y]) is continuous and singular. Hence, con-
sidering that γ has full support using equation (5.11) yields that y 7→ KC(x, [0, y]) is also
strictly increasing on I.
Having that, showing that C has full support is straightforward: In fact, for every
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(x, y) ∈ (0, 1)d−1 × (0, 1) and every open rectangle U = U1 × · · · × Ud with open non-
empty intervals U1, . . . , Ud ⊆ (0, 1) fulfilling (x, y) ∈ U and U ⊆ (0, 1)d we can proceed as
follows: Considering that C1:d−1 is absolutely continuous strictness of ψ implies that the
density c1:d−1 of C1:d−1 fulfills c1:d−1 > 0 λd−1-almost everywhere in (0, 1)d−1 using disin-
tegration and the fact that KC(x, ·) has full support and hence fulfills KC(x, Ud) > 0 for
µC1:d−1-almost every x ∈ Id−1 it follows that

µC(U) =

∫
×d−1

j=1Uj

KC(x, Ud) dµC1:d−1(x) > 0.

This shows that (x, y) is contained in the support of µC , since supports are closed the the
support of µC is Id and the first two assertions are proved. Since γ has no point masses the
third assertion is an immediate consequence of Theorem 5.6 and it remains to prove the last
assertion. Again according to Theorem 5.6

F d
K(t) = γ([0, 1

φ(t)
]) = γ((0, 1

φ(t)
])

holds for every t ∈ (0, 1], implying that F d
K is continuous and strictly increasing. Finally,

using a chain rule argument similar to the one at the end of the proof of Theorem 5.12
shows that (F d

K)
′(x) = 0 holds for λ-almost every x ∈ I and the proof is complete.

Starting with the probability measure β :=
∑∞

i=1 2
−iδqi with {q1, q2, . . .} denoting an enu-

meration of the rationals in (0,∞) and proceeding analogously to the proof of the previous
theorem yields the following discrete version of it:

Theorem 6.2. There exists a copula C ∈ Cdar with the following properties:

(1) µdisC (Id) = 1 and C has full support.

(2) For µC1:d−1-almost every x ∈ Id−1 the conditional distribution function y 7→
KC(x, [0, y]) is a strictly increasing step function.

(3) There exists a dense countable subset Q of (0, 1) such that µC(Lt) > 0 if, and only if,
t ∈ Q.

(4) The Kendall distribution function F d
K of C is a strictly increasing step function.

Appendix A. Level set mass and Kendall distribution function: Calculations

Recall from Section 3 that the t-level hypersurfaces f t are defined on the upper t-cuts
[C1:d−1]t of the (d− 1)-marginal. Using the notation xm = (x1, x2, . . . , xm), m ∈ N, for x ∈
[C1:d−1]t we have x1 ≥ t, x2 ≥ ψ(φ(t) − φ(x1)) =: f t(x1), x3 ≥ ψ (φ(t)− φ(x1)− φ(x2)) =:
f t(x2) and iteratively,

xd−1 ≥ ψ
(
φ(t)−

d−2∑
i=1

φ(xi)
)
=: f t(xd−2).
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Proposition Appendix A.1. Suppose that C ∈ Cdar has generator ψ and let µC denote
the corresponding d-stochastic measure. Then for every t > 0 we have

µC(Lt) =
(−φ(t))d−1

(d− 1)!
·
(
D−ψ(d−2)(φ(t))−D−ψ(d−2)(φ(t−))

)
. (A.1)

If C is strict then µC(L0) = 0 and for non-strict C,

µC(L0) = (−φ(0))d−1

(d−1)!
·D−ψ(d−2)(φ(0)). (A.2)

Proof. We start with t > 0. Using disintegration (2.1), the definition of f t and the fact that
C1:d−1 is absolutely continuous with density c1:d−1 we get

µC(Lt) =

∫
Id−1

KC(s, (Lt)s) dµC1:d−1(s)

=

∫
[t,1]×[f t(s1),1]×...×[f t(sd−2),1]

KC(s, {f t(s)}) dµC1:d−1(s)

=

∫
[t,1]

· · ·
∫
[f t(sd−2),1]

d−1∏
i=1

φ′(si) ·
[
D−ψ(d−2)(φ(t))−D−ψ(d−2)(φ(t−))

]
dλ(s)

=
[
D−ψ(d−2)(φ(t))−D−ψ(d−2)(φ(t−))

]
·
∫
[t,1]

· · ·
∫
[f t(sd−2),1]

d−1∏
i=1

φ′(si) dλ(s).

Letting (II) denote the iterated integrals in the previous line we have

(II) =

∫
[t,1]

∫
[f t(s1),1]

· · ·
d−2∏
i=1

φ′(si)

∫
[f t(sd−2),1]

φ′(sd−1)(−1)0

[
φ(t)−

d−1−0∑
i=1

φ(si)

]0
dλ(s)

and the chain rule directly yields

(II) =

∫
[t,1]

· · ·
∫
[f t(sd−4),1]

d−3∏
i=1

φ′(si)

∫
[f t(sd−3),1]

φ′(sd−2)

· (−1)1

1
·

[
φ(t)−

d−1−1∑
i=1

φ(si)

]1
dλ(sd−2)dλ(sd−3).

Proceeding analogously for sd−2 gives

(II) =

∫
[t,1]

· · ·
∫
[f t(sd−4),1]

d−3∏
i=1

φ′(si) ·
(−1)2

1 · 2
·

[
φ(t)−

d−1−2∑
i=1

φ(si)

]2
dλ(sd−3)

and after finitely many steps we obtain

(II) =

∫
[t,1]

φ′(s1) ·
(−1)d−2

1 · 2 · · · (d− 2)
[φ(t)− φ(s1)]

d−2 dλ(s1) =
(−1)d−1

(d− 1)!
· φ(t)d−1

as desired. For t = 0 and strict C we obviously have µC(L0) = 0. For non-strict C we have
KC(s, {f 0(s)}) = KC(s, [0, f

0(s)]) and calculations as those above yield the result.
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Proposition Appendix A.2. Suppose that C ∈ Cdar has generator ψ. Then for t > 0

F d
K(t) = D−ψ(d−2)(φ(t))

(−1)d−1

(d− 1)!
φ(t)d−1 +

d−2∑
k=0

ψ(k)(φ(t))
(−1)k

k!
φ(t)k. (A.3)

holds. For t = 0 and strict C we have F d
K(0) = 0 and for non-strict C,

F d
K(0) = D−ψ(d−2)(φ(0)) · (−1)d−1

(d− 1)!
· φ(0)d−1. (A.4)

Proof. Applying disintegration (2.1) and decomposing Id−1 = [C1:d−1]t ∪ [C1:d−1]ct yields

F d
K(t) = µC([C]

c
t) =

∫
Id−1

KC (x, ([C]ct)x) dµC1:d−1(x)

=

∫
[C1:d−1]t

KC (x, ([C]ct)x) dµC1:d−1(x) +

∫
[C1:d−1]ct

KC (x, ([C]ct)x) dµC1:d−1(x)

Denoting by (III) and (IV ) the first and the second of the above summands, respectively,
analogously as in Proposition Appendix A.1 we obtain

(III) = D−ψ(d−2)(φ(t)) · (−1)d−1

(d− 1)!
φ(t)d−1.

Regarding (IV ), we have x ∈ [C1:d−1]ct if, and only if, ([C]ct)x = I and hence

(IV ) =

∫
[C1:d−1]ct

1 dµC1:d−1(x) = µC1:d−1([C1:d−1]ct) = F d−1
K (t).

Proceeding iteratively finally yields

F d
K(t) = D−ψ(d−2)(φ(t)) · (−1)d−1

(d− 1)!
· φ(t)d−1 +

d−2∑
k=1

ψ(k)(φ(t))
(−1)k

k!
φ(t)k + t.

For t = 0 we have F d
K(t) =

∫
{s∈Id−1:

∑d−1
i=1 φ(si)≤φ(0)}

KC(x, ([C]
c
0)x) dµC1:d−1(x) and the result

follows in the same manner.

Lemma Appendix A.3. Suppose that f, f1, f2, . . . are convex functions such that (fn)n∈N
converges to f pointwise on (0,∞). Then limn→∞D−fn(x) = D−f(x) holds for every
x ∈ Cont(D−f). Moreover, the sequence (D−fn)n∈N converges continuously to D−f on
Cont(D−f), i.e., for every sequence (zn)n∈N with limit z ∈ Cont(D−f) we have

lim
n→∞

D−fn(zn) = D−f(z).

Proof. Convexity implies that for every h > 0 we have

lim sup
n→∞

D+fn(x) ≤ lim sup
n→∞

fn(x+ h)− fn(x)

h
=
f(x+ h)− f(x)

h
,
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which, considering h ↓ 0, yields lim supn→∞D+fn(x) ≤ D+f(x). The other inequality
lim infn→∞D−fn(x) ≥ D−f(x) follows in the same manner, so altogether we get

D−f(x) ≤ lim inf
n→∞

D−fn(x) ≤ lim sup
n→∞

D+fn(x) ≤ D+f(x)

from which the fist assertion follows since for x ∈ Cont(D−f) we have D+f(x) = D−f(x).
For the second part let (zn)n∈N be a sequence in (0,∞) converging to some point z ∈

Cont(D−f) ⊆ (0,∞). We can find two strictly decreasing sequences (ak)k∈N, (bk)k∈N in
(0,∞) converging to 0 with z − ak, z + bk ∈ Cont(D−f) for every k ∈ N. Fix k ∈ N. Then
there exists some index n0 ∈ N such that for all n ≥ n0 we have that z − ak < zn < z + bk
holds. Monotonicity of D−fn implies

D−fn(z − ak) ≤ D−fn(zn) ≤ D−fn(z + bk)

for every such n ≥ n0. Having this we get

lim
n→∞

D−fn(z − ak) ≤ lim inf
n→∞

D−fn(zn)

≤ lim sup
n→∞

D−fn(zn) ≤ lim
n→∞

D−fn(z + bk),

from which the result follows since z ∈ Cont(D−f) and therefore

lim
k→∞

lim
n→∞

D−fn(z − ak) = D−f(z) = lim
k→∞

lim
n→∞

D−fn(z + bk)

holds.

Appendix B. Approximations by discrete, absolutely continuous and singular
Williamson measures

We now tackle Theorem Appendix B.2 already used in the proof of Corollary 5.14 and
start with the following simple lemma simplifying the approximation procedure. Thereby,
for every a ∈ (0,∞) we will let Ta : (0,∞) → (0,∞) denote the linear transformation
Ta(x) = ax.

Lemma Appendix B.1. Suppose that γ ∈ PWd
, that (βn)n∈N is a sequence of probability

measures on B([0,∞) satisfying βn({0}) = 0 for every n ∈ N but not necessarily fulfilling
equation (5.2), and that (βn)n∈N converges weakly to γ. Then there exists a sequence (an)n∈N
in (0,∞) converging to 1

2
such that the following properties hold:

� Each probability measure γn := β
Tan
n , n ∈ N, fulfills γn ∈ PWd

.

� (γn)n∈N converges weakly on [0,∞) to γ.

Proof. Let ψγ denote the normalized Archimedean generator corresponding to γ and ψβn
the (not necessarily normalized) generator induced via ψβn = Wd(βn). Then proceeding as
in the first part of the proof of Theorem 5.9 it follows that (ψβn)n∈N converges uniformly to
ψγ. Letting an denote the unique element in (0,∞) fulfilling ψβn(an) =

1
2
using monotonicity
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of generators and the fact that ψγ is normalized it is straightforward to verify that (an)n∈N
converges to 1.
The probability measure γn := β

Tan
n obviously fulfills γn({0}) = 0, moreover using change

of coordinates yields

1

2
= ψβn(an) =

∫
(0,∞)

(1− tan)
d−1
+ dβn(t) =

∫
(0,∞)

(1− Tan(t))
d−1
+ dβn(t)

=

∫
(0,∞)

(1− s)d−1
+ dγn(t) =

∫
(0,1)

(1− s)d−1 dγn(t),

so γn ∈ PWd
and it remains to show weak convergence. Applying Lemma 5.2 and Lemma

4.4 (continuous convergence) yields

lim
n→∞

γn([0, z]) = lim
n→∞

βn

([
0,
z

an

])
= lim

n→∞

d−2∑
k=0

(−1)kψ
(k)
βn

(an
z
)

k!

(an
z

)k
+

(−1)d−1D−ψ
(d−2)
βn

(an
z
)

(d− 1)!

(an
z

)d−1

= γ([0, z])

for every point z ∈ (0,∞) with γ({z}) = 0 which completes the proof.

Theorem Appendix B.2. Suppose that γ ∈ PWd
. Then there exists a sequence (γ1n)n∈N

of discrete measures in PWd
, a sequence (γ2n)n∈N of singular measures without point masses

in PWd
, and a sequence (γ3n)n∈N of absolutely continuous measures PWd

that all converge
weakly to γ on [0,∞).

Proof. Let F denote the distribution function corresponding to γ, i.e., F (z) = γ((0, z]) =
γ([0, z]) for every z ∈ [0,∞) and let Q := {q0, q1, q2, . . .} denote a countably infinite subset
of Cont(F ) which is dense in [0,∞). Without loss of generality we assume that q0 = 0.
Furthermore let the function f : I → [0, 1] be right-continuous, non-decreasing with f(0) =
0, f(1) = 1 and g : [0,∞) → I be right-continuous, non-decreasing with g(0) = 0, g(∞) = 1.
For every non-degenerated compact interval [a, b] ⊆ [0,∞) and compact interval [c, d] ⊆
[0, 1] define the rescaled version f

[c,d]
[a,b] : [a, b] → [c, d] of f to [a, b], [c, d] by

f
[c,d]
[a,b] (x) = c+ (d− c)f

(
x− a

b− a

)
,

and for every interval [a,∞) ⊆ [0,∞) and [c, d] ⊆ I define g
[c,d]
[a,∞) : [a,∞) → [c, d] of g to

[a,∞), [c, d] by

g
[c,d]
[a,∞)(x) = c+ (d− c)g(x− a).

Using this notation define the distribution function F1 : [0,∞) → [0, 1] by

F1(x) = f
[0,F (q1)]
[0,q1]

(x) · 1[0,q1](x) + g
[F (q1),1]
[q1,∞) (x) · 1(q1,∞)(x)
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and notice that F1 fulfills F1(qi) = F (qi) for i ∈ {0, 1}. In the second step define the
distribution function F2 : [0,∞) → [0, 1] by

F2(x) = f
[0,F (q2

(1)
)]

[0,q2
(1)

]
(x) · 1[0,q2

(1)
](x) + f

[F (q2
(1)

),F (q2
(2)

)]

[q2
(1)
,q2

(2)
]

(x) · 1(q2
(1)
,q2

(2)
](x)

+ g
[F (q2

(2)
),1]

[q2
(2)
,∞)

(x) · 1(q2
(2)
,∞)(x),

whereby 0 < q2(1) < q2(2) denotes the order statistics of 0, q1, q2 (the exponent denotes the

‘sample size’). Obviously F2 fulfills F2(qi) = F (qi) for i ∈ {0, 1, 2}. Proceeding analogously
yields a sequence (Fn)n∈N of distribution functions on [0,∞) fulfilling that for every i ∈ N
we have Fn(qi) = F (qi) for every n ≥ i. In other words, the sequence (Fn)n∈N converges on
a dense set to the distribution function F , implying that (Fn)n∈N converges to F weakly.
Notice that the just discussed construction works for arbitrary f, g fulfilling the afore-
mentioned requirements. If we chose both f and g absolutely continuous then obviously
each Fn is absolutely continuous, if we chose both f and g as step functions then Fn is a step
function, and if we choose f, g to be continuous with f ′ = 0 and g′ = 0 almost everywhere
(one could use, for instance, the Cantor function or work with any other strictly increasing
singular continuous distribution function, see [10]) then each Fn is continuous and obvi-
ously fulfills F ′

n = 0 almost everywhere. The desired result now follows by considering the
probability measures βn corresponding to Fn and applying Lemma Appendix B.1.
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