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Abstract: Working with shuffles we establish a close link between Kendall’s 𝜏 , the so-called length measure, and
the surface area of bivariate copulas and derive some consequences. While it is well-known that Spearman’s 𝜌

of a bivariate copula 𝐴 is a rescaled version of the volume of the area under the graph of 𝐴, in this contribution
we show that the other famous concordance measure, Kendall’s 𝜏 , allows for a simple geometric interpretation
as well - it is inextricably linked to the surface area of 𝐴.
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1 Introduction

Spearman’s 𝜌 of a bivariate copula 𝐴 is a rescaled version of the volume below the graph of 𝐴 (see [3, 14]) in
the sense that

𝜌(𝐴) = 12

∫︁
[0,1]2

𝐴𝑑𝜆2 − 3

holds. Letting [𝐴]𝑡 := {(𝑥, 𝑦) ∈ [0, 1]2 : 𝐴(𝑥, 𝑦) ≥ 𝑡} denote the lower 𝑡-cut of 𝐴 for every 𝑡 ∈ [0, 1] and
applying Fubini’s theorem directly yields

𝜌(𝐴) = 12

∫︁
[0,1]

𝜆2([𝐴]𝑡)𝑑𝜆(𝑡)− 3,

which lead the authors of [1] to conjecturing that adequately rescaling the so-called length measure ℓ(𝐴) of
𝐴, defined as the average arc-length of the contour lines of 𝐴, might result in a (new or already known)
concordance measure. The conjecture was falsified in [1], only some but not all properties of a concordance
measure are fulfilled, in particular, we do not have continuity with respect to pointwise convergence of copulas
in general.

Motivated by the afore-mentioned facts, the objective of this note is two-fold: we first derive the somewhat
surprising result that on a subfamily of bivariate copulas - the class 𝒞𝑚𝑐𝑑 of all mutually completely dependent
copulas (including all classical shuffles), which is dense in the class 𝒞 of all bivariate copulas with respect to
uniform convergence - the length measure is, in fact, an affine transformation of Kendall’s 𝜏 and vice versa.
As a consequence, the length measure restricted to 𝒞𝑚𝑐𝑑 is continuous with respect to pointwise convergence
of copulas. We then focus on the surface area of bivariate copulas and derive analogous statements, i.e., that
on the class 𝒞𝑚𝑐𝑑 the surface area is an affine transformation of Kendall’s 𝜏 (and hence of the length measure)
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too. For obtaining both main results a simple geometric identity linking the length measure and the surface
area with the area of the set Ω√

2, given by

Ω𝐴ℎ√
2
=

{︁
(𝑥, 𝑦) ∈ [0, 1]2 : ℎ(𝑥) ≤ 𝑦, ℎ−1(𝑦) ≤ 𝑥

}︁
, (1)

where ℎ denotes the transformation corresponding to the completely dependent copula 𝐴ℎ, will be key.
The remainder of this note is organized as follows: In Section 2 we gather preliminaries and notations

that will be used in the sequel. Section 3 is the core of the paper, derives the afore-mentioned identities
linking Kendall’s 𝜏 , the length measure and the surface of mutually completely dependent copulas, provides
a geometrical interpretation, and shows that outside the class 𝒞𝑚𝑐𝑑 these identities need not hold. As a small
(but mathematically interesting) application of the established relationships, Section 4 derives simple formulas
for the length measure and the surface area of completely dependent copulas with self-similar support which,
without the afore-mentioned identities seem very hard to establish. Finally, Section 5 provides an outlook on
related questions to be tackled in the future.

2 Notation and preliminaries

In the sequel we will let 𝒞 denote the family of all bivariate copulas. For each copula 𝐶 ∈ 𝒞 the corresponding
doubly stochastic measure will be denoted by 𝜇𝐶 , i.e., 𝜇𝐶([0, 𝑥] × [0, 𝑦]) = 𝐶(𝑥, 𝑦) holds for all 𝑥, 𝑦 ∈ [0, 1].
Considering the uniform metric 𝑑∞ on 𝒞 it is well-known that (𝒞, 𝑑∞) is a compact metric space and that in
𝒞 pointwise and uniform convergence are equivalent. For more background on copulas and doubly stochastic
measures we refer to [3, 14].
For every metric space (Ω, 𝑑) the Borel 𝜎-field in Ω will be denoted by ℬ(Ω). The Lebesgue measure on
the Borel 𝜎-field ℬ([0, 1]2) of [0, 1]2 will be denoted by 𝜆2, the univariate version on ℬ([0, 1]) by 𝜆. Given
probability spaces (Ω,𝒜,P) and (Ω′,𝒜′,P)′ and a measurable transformation 𝑇 : Ω → Ω′ the push-forward
of P via 𝑇 will be denoted by P𝑇 , i.e., P𝑇 (𝐹 ) = P(𝑇−1(𝐹 )) for all 𝐹 ∈ 𝒜′.
In what follows, Markov kernels will be a handy tool. A mapping 𝐾 : R × ℬ(R) → [0, 1] is called a Markov
kernel from (R,ℬ(R)) to (R,ℬ(R)) if the mapping 𝑥 ↦→ 𝐾(𝑥,𝐵) is measurable for every fixed 𝐵 ∈ ℬ(R) and the
mapping 𝐵 ↦→ 𝐾(𝑥,𝐵) is a probability measure for every fixed 𝑥 ∈ R. A Markov kernel 𝐾 : R×ℬ(R) → [0, 1]

is called regular conditional distribution of a (real-valued) random variable 𝑌 given (another random variable)
𝑋 if for every 𝐵 ∈ ℬ(R)

𝐾(𝑋(𝜔), 𝐵) = E(1𝐵 ∘ 𝑌 |𝑋)(𝜔)

holds P-a.s. It is well known that a regular conditional distribution of 𝑌 given 𝑋 exists and is unique P𝑋 -
almost surely. For every 𝐴 ∈ 𝒞 (a version of) the corresponding regular conditional distribution (i.e., the
regular conditional distribution of 𝑌 given 𝑋 in the case that (𝑋,𝑌 ) ∼ 𝐴) will be denoted by 𝐾𝐴(·, ·) and
directly be interpreted as mapping from 𝐾𝐴 : [0, 1]× ℬ([0, 1]) → [0, 1]. Note that for every 𝐴 ∈ 𝒞 and Borel
sets 𝐸,𝐹 ∈ ℬ([0, 1]) we have the following disintegration formulas:∫︁

𝐸

𝐾𝐴(𝑥, 𝐹 )𝑑𝜆(𝑥) = 𝜇𝐴(𝐸 × 𝐹 ) and
∫︁

[0,1]

𝐾𝐴(𝑥, 𝐹 )𝑑𝜆(𝑥) = 𝜆(𝐹 ) (2)

For more details and properties of conditional expectations and regular conditional distributions we refer to
[10, 12].
A copula 𝐴 ∈ 𝒞 will be called completely dependent (or functionally dependent) if there exists some 𝜆-
preserving transformation ℎ : [0, 1] → [0, 1] (i.e., a transformation with 𝜆ℎ = 𝜆) such that 𝐾(𝑥,𝐸) =

1𝐸(ℎ(𝑥)) is a Markov kernel of 𝐴. The copula induced by ℎ will be denoted by 𝐴ℎ, the class of all completely
dependent copulas by 𝒞𝑐𝑑. A completely dependent copula 𝐴ℎ is called mutually completely dependent, if the
transformation ℎ is bijective. Notice that in this case the transpose 𝐴𝑡

ℎ of 𝐴ℎ, defined by 𝐴𝑡
ℎ(𝑥, 𝑦) = 𝐴ℎ(𝑦, 𝑥),

coincides with 𝐴ℎ−1 . The family of all mutually completely dependent copulas will be denoted by 𝒞𝑚𝑐𝑑. Notice
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that mutually completely dependent copulas model the seemingly pathological case of pairs (𝑋,𝑌 ) of uniform
[0, 1] random variables 𝑋,𝑌 such that 𝑌 is a measurable function of 𝑋 and vice versa. It is well known (see
[3, 14]), however, that 𝒞𝑚𝑐𝑑 is dense in (𝒞, 𝑑∞), in fact even the family of all equidistant even shuffles (again see
[3, 14]) is dense. This very observation led to the observation that 𝑑∞ is not able to distinguish independence
and complete dependence, which, in turn, triggered the study of stronger metrics overcoming that problem
in [16]. For further properties of completely dependent copulas we refer to [16] and the references therein.

Turning towards the length profile introduced and studied in [1], let Γ𝐴,𝑡 denote the boundary of the
lower 𝑡-cut [𝐴]𝑡 in (0, 1)2 and 𝐻1(Γ𝐴,𝑡) it’s arc-length. Then the length profile of 𝐴 is defined as the function
𝐿𝐴 : [0, 1] → [0,∞), given by

𝐿𝐴(𝑡) = 𝐻1(Γ𝐴,𝑡).

It is easy to verify that √
2(1− 𝑡) ≤ 𝐿𝐴(𝑡) ≤ 2(1− 𝑡) (3)

holds for every 𝑡 ∈ (0, 1). Building upon 𝐿𝐴 the so-called length measure ℓ(𝐴) of 𝐴 is defined as

ℓ(𝐴) =

∫︁
(0,1)

𝐿𝐴(𝑡)𝑑𝜆(𝑡) (4)

and describes the average arc-length of upper 𝑡-cuts of 𝐴. Using ineq. (3) immediately yields

ℓ(𝑊 ) =
1√
2
≤ ℓ(𝐴) ≤ 1 = ℓ(𝑀) (5)

as well as ℓ(𝐴) ∈ [ 1√
2
, 1] holds (ineq. (5) was also one of the reasons for falsely conjecturing that the length

measure might be transformable into a concordance measure).
In [1] it was shown that for mutually completely dependent copulas 𝐴ℎ the length profile allows for a

simple calculation. In fact, using the co-area formula we have

ℓ(𝐴ℎ) =

∫︁
(0,1)2

‖∇𝐴ℎ(𝑢, 𝑣)‖2 𝑑𝜆2(𝑢, 𝑣),

where ∇𝐴ℎ denotes the gradient of 𝐴ℎ (whose existence 𝜆2-almost everywhere is assured by Rademacher’s
theorem and Lipschitz continuity, see [5]). The last equation simplifies to the nice identity

ℓ(𝐴ℎ) = 1− (2−
√
2)𝜆2(Ω√

2), (6)

with

Ω𝐴ℎ√
2
:= Ω√

2 =
{︁
(𝑢, 𝑣) ∈ (0, 1)2 : ‖∇𝐴ℎ(𝑢, 𝑣)‖2 =

√
2
}︁

=
{︁
(𝑢, 𝑣) ∈ (0, 1)2 : ℎ(𝑢) ≤ 𝑣, ℎ−1(𝑣) ≤ 𝑢

}︁
. (7)

According to [1] (also see the proof of Lemma 3.4) the 𝜆2-measure of the set Ω√
2 coincides with the one of

the set Ω0, defined by

Ω𝐴ℎ
0 := Ω0 =

{︁
(𝑢, 𝑣) ∈ (0, 1)2 : ‖∇𝐴ℎ(𝑢, 𝑣)‖2 = 0

}︁
=

{︁
(𝑢, 𝑣) ∈ (0, 1)2 : ℎ(𝑢) > 𝑣, ℎ−1(𝑣) > 𝑢

}︁
. (8)

Obviously Ω√
2 is the set of all points (𝑢, 𝑣) ∈ [0, 1]2 ‘above’, and Ω0 the set of all points (𝑢, 𝑣) ∈ [0, 1]2 ‘below’

the graphs of ℎ and ℎ−1. Notice that for classical equidistant straight shuffles eq. (6) implies that ℓ(𝐴ℎ) can
be calculated by simply counting squares as Figure 2 illustrates in terms of two simple examples - one shuffle
with three, and a second one with nice equidistant stripes. Throughout the rest of this note we will only write
Ω√

2 instead of Ω𝐴ℎ√
2

as well as Ω0 instead of Ω𝐴ℎ
0 whenever no confusion will arise.
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Fig. 1: The sets Ω0 (in magenta) and Ω√
2 (in green) for an even shuffles of three strips (left panel) and nine strips (right

panel). In this case we have 𝜆2(Ω√
2) =

1
9

and ℓ(𝐴ℎ) = 1− (2−
√
2) 1

9
for the first shuffle and 𝜆2(Ω√

2) =
1
9
+ 1

27
as well

as ℓ(𝐴ℎ) = 1− (2−
√
2)

(︀
1
9
+ 1

27

)︀
for the second one.

3 The interrelations

We now derive a simple formula linking Kendall’s 𝜏 and the length measure for mutually completely dependent
copula and start with some preliminary observations. Working with checkerboard copulas, using integration
by parts (see [14]) and finally applying an approximation result like [11, Theorem 3.2] yields that for arbitrary
bivariate copulas 𝐴,𝐵 ∈ 𝒞 the following identity holds:

𝜏(𝐴) = 4

∫︁
[0,1]2

𝐴𝑑𝜇𝐴 − 1 = 4

⎛⎜⎝1

2
−

∫︁
[0,1]2

𝐾𝐴(𝑥, [0, 𝑦])𝐾𝐴𝑡(𝑦, [0, 𝑥])𝑑𝜆2(𝑥, 𝑦)

⎞⎟⎠− 1. (9)

For 𝐴ℎ ∈ 𝒞𝑚𝑐𝑑 eq. (9) can be derived in the following simple alternative way, which we include for the sake
of completeness: Using the fact that for 𝐴ℎ ∈ 𝒞𝑚𝑐𝑑 and every 𝑥 ∈ [0, 1] we have

𝐴(𝑥, ℎ(𝑥)) =

∫︁
[0,𝑥]

𝐾𝐴ℎ
(𝑡, [0, ℎ(𝑥)])𝑑𝜆(𝑡) =

∫︁
[0,𝑥]

𝐾𝐴ℎ
(𝑡, [0, ℎ(𝑥)))𝑑𝜆(𝑡)

=

∫︁
[0,𝑥]

1[0,ℎ(𝑥))(ℎ(𝑡))𝑑𝜆(𝑡) =

∫︁
[0,𝑥]

(1− 1[ℎ(𝑥),1](ℎ(𝑡))𝑑𝜆(𝑡)

= 𝑥−
∫︁

[0,1]

1[0,𝑥](𝑡)1[ℎ(𝑥),1](ℎ(𝑡))𝑑𝜆(𝑡).

Using disintegration and change of coordinates directly yields∫︁
[0,1]2

𝐴𝑑𝜇𝐴 =

∫︁
[0,1]

𝐴(𝑥, ℎ(𝑥))𝑑𝜆(𝑥) =
1

2
−

∫︁
[0,1]

∫︁
[0,1]

1[0,𝑥](𝑡)1[ℎ(𝑥),1](ℎ(𝑡))𝑑𝜆(𝑡)𝑑𝜆(𝑥)
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and hence proves eq. (9). The latter identity, however, boils down to an affine transformation of 𝜆2(Ω√
2) by

considering ∫︁
[0,1]2

𝐴𝑑𝜇𝐴 =
1

2
−

∫︁
[0,1]

∫︁
[0,1]

1[0,𝑥](ℎ
−1 ∘ ℎ(𝑡))1[ℎ(𝑥),1](ℎ(𝑡))𝑑𝜆(𝑡)𝑑𝜆(𝑥)

=
1

2
−

∫︁
[0,1]

∫︁
[0,1]

1[0,𝑥](ℎ
−1(𝑦))1[ℎ(𝑥),1](𝑦)𝑑𝜆(𝑦)𝑑𝜆(𝑥)

=
1

2
− 𝜆2(Ω√

2).

Having this, the identity

𝜏(𝐴ℎ) = 4
(︁
1

2
− 𝜆2(Ω√

2)
)︁
− 1 = 1− 4𝜆2(Ω√

2). (10)

follows immediately. Notice that eq. (10) implies that the area of Ω√
2 coincides with the quantity inv(h) as

studied in [15, Lemma 3.1]. Comparing eq. (6) and eq. (10) shows the existence of an affine transformation
𝑎 : [−1, 1] → [ 1√

2
, 1] such that

𝑎 (𝜏(𝐴ℎ)) = ℓ(𝐴ℎ)

holds for every 𝐴ℎ ∈ 𝒞𝑚𝑐𝑑 - in other words, we have proved the subsequent result:

Theorem 3.1. For every 𝐴ℎ ∈ 𝒞𝑚𝑐𝑑 the following identity linking the length measure ℓ and Kendall’s 𝜏

holds:

ℓ(𝐴ℎ) = 1− 2−
√
2

4
(1− 𝜏(𝐴ℎ)) (11)

Theorem 3.1 provides an answer to the question posed in [1], ‘whether there are links between the length of
level curves and concordance measures’ - even the conjectured ‘weighting’ mentioned in [1] is not necessary,
in the class 𝒞𝑚𝑐𝑑 all we need is a fixed affine transformation.
In [1] it was further shown that the length measure interpreted as function ℓ : 𝒞 → [

√
2
2 , 1] is not continuous

w.r.t. 𝑑∞. The previous result implies, however, that within the dense subclass 𝒞𝑚𝑐𝑑 the length measure is
indeed continuous:

Corollary 3.2. The mapping ℓ : 𝒞𝑚𝑐𝑑 → [ 1√
2
, 1] is continuous with respect to 𝑑∞.

Proof. Suppose that 𝐴ℎ, 𝐴ℎ1
, 𝐴ℎ2

, . . . are mutually completely dependent copulas and that the sequence
(𝐴ℎ𝑛

)𝑛∈N converges to 𝐴ℎ pointwise. Being a concordance measure Kendall’s 𝜏 is continuous with respect to
𝑑∞, so we have lim𝑛→∞ 𝜏(𝐴ℎ𝑛

) = 𝜏(𝐴ℎ) and eq. (10) directly yields lim𝑛→∞ ℓ(𝐴ℎ𝑛
) = ℓ(𝐴ℎ).

Corollary 3.3. For every 𝑧 ∈ [ 1√
2
, 1] there exists some mutually completely dependent copula 𝐴ℎ with

ℓ(𝐴ℎ) = 𝑧. In other words, all values in [ 1√
2
, 1] are attained by ℓ.

Proof. According to [15] for each (𝑥, 𝑦) in the region determined by Kendall’ 𝜏 and Spearman’s 𝜌 there exists
some mutually completely dependent copula 𝐶ℎ fulfilling

(𝜏(𝐴ℎ), 𝜌(𝐴ℎ)) = (𝑥, 𝑦).

Having this, the result directly follows via eq. (10).

Moving away from the length measure we now turn to the surface area of copulas, derive analogous statements
and start with showing yet another simple formula for elements in 𝒞𝑚𝑐𝑑. Considering that copulas are Lipschitz
continuous, the surface area surf(𝐴) of an arbitrary copula 𝐴 is given by

surf(𝐴) =

∫︁
[0,1]2

√︃(︂
𝜕𝐴

𝜕𝑥
(𝑥, 𝑦)

)︂2

+

(︂
𝜕𝐴

𝜕𝑦
(𝑥, 𝑦)

)︂2

+ 1 𝑑𝜆2(𝑥, 𝑦)
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=

∫︁
[0,1]2

√︀
𝐾𝐴(𝑥, [0, 𝑦])2 +𝐾𝐴𝑡(𝑦, [0, 𝑥])2 + 1 𝑑𝜆2(𝑥, 𝑦). (12)

Again working with mutually completely dependent copulas yields the following result:

Lemma 3.4. For every 𝐴ℎ ∈ 𝒞𝑚𝑐𝑑 the surface area of 𝐴ℎ is given by

surf(𝐴ℎ) =
√
2−

(︁
2
√
2− 1−

√
3
)︁
𝜆2(Ω√

2). (13)

Proof. For the case of a completely dependent copula 𝐴ℎ eq. (12) obviously simplifies to

surf(𝐴ℎ) =

∫︁
[0,1]2

√︁
12
[0,𝑦]

(ℎ(𝑥)) + 12
[0,𝑥]

(ℎ−1(𝑦)) + 1 𝑑𝜆2(𝑥, 𝑦)

=

∫︁
[0,1]2

√︁
1[0,𝑦](ℎ(𝑥)) + 1[0,𝑥](ℎ

−1(𝑦)) + 1 𝑑𝜆2(𝑥, 𝑦).

Considering that the latter integrand is a step function only attaining the values 1,
√
2 and

√
3, defining

Ω𝐴ℎ
0 := Ω0 =

{︁
(𝑥, 𝑦) ∈ (0, 1)2 : ℎ(𝑥) > 𝑦, ℎ−1(𝑦) > 𝑥

}︁
as well as (Ω√

2 as before)

Ω𝐴ℎ
1 := Ω1 = [0, 1]2 ∖ (Ω√

2 ∪ Ω0)

we therefore have

surf(𝐴ℎ) = 𝜆2(Ω0) +
√
2𝜆2(Ω1) +

√
3𝜆2(Ω√

2).

The latter identity can be further simplified: The measurable bijection Ψℎ : [0, 1]2 → [0, 1]2, defined by
Ψℎ(𝑥, 𝑦) = (ℎ−1(𝑦), ℎ(𝑥)) obviously fulfills 𝜆Ψℎ

2 = 𝜆2. Therefore using the fact that

Ψ−1
ℎ (Ω0) = {(𝑥, 𝑦) ∈ [0, 1]2 : (ℎ−1(𝑦), ℎ(𝑥)) ∈ Ω0}

= {(𝑥, 𝑦) ∈ [0, 1]2 : ℎ(𝑥) ≤ 𝑦, ℎ−1(𝑦) ≤ 𝑥} = Ω√
2

it follows that 𝜆2(Ω0) = 𝜆2(Ω√
2) holds. This altogether yields

surf(𝐴ℎ) = 𝜆2(Ω√
2) +

√
2𝜆2(Ω1) +

√
3𝜆2(Ω√

2)

= (1 +
√
3)𝜆2(Ω√

2) +
√
2
(︁
1− 2𝜆2(Ω√

2)
)︁

=
√
2 +

(︁
1 +

√
3− 2

√
2
)︁

⏟  ⏞  
<0

𝜆2(Ω√
2),

which completes the proof.

Theorem 3.5. For every 𝐴ℎ ∈ 𝒞𝑚𝑐𝑑 the following identity linking the surface area and Kendall’s 𝜏 holds:

surf(𝐴ℎ) =
√
2− 2

√
2− 1−

√
3

4
(1− 𝜏(𝐴ℎ)) (14)

As in the case of the length measure we have the following two immediate corollaries:

Corollary 3.6. The mapping surf : 𝒞𝑚𝑐𝑑 → [1+
√
3

2 ,
√
2] is continuous with respect to 𝑑∞.

Corollary 3.7. For every 𝑧 ∈ [1+
√
3

2 ,
√
2] there exists some mutually completely dependent copula 𝐴ℎ with

surf(𝐴ℎ) = 𝑧. In other words, all values in [1+
√
3

2 ,
√
2] are attained by surf.
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Combining Theorem 3.1 and Theorem 3.5 yields the following identity linking the length measure and the
surface area of mutually completely dependent copulas.

Corollary 3.8. For every 𝐴ℎ ∈ 𝒞𝑚𝑐𝑑 the following identity holds:

surf(𝐴ℎ) =
√
2− 2

√
2− 1−

√
3

2−
√
2

(1− ℓ(𝐴ℎ)) (15)

Remark 3.9. The afore-mentioned interrelations lead to the following seemingly new interpretation of the
interplay between the two most well-known measures of concordance, Kendall’s 𝜏 and Spearman’s 𝜌, as studied
in [2, 4, 15] (and the references therein): Within the dense class 𝒞𝑚𝑐𝑑 maximizing/minimizing Kendall’s 𝜏 for
a given value of Spearman’s 𝜌 is equivalent to maximizing/minimizing the surface area of copulas for a given
value of the volume. Determining the exact 𝜏 -𝜌 region (for which according to [15] considering all shuffles is
sufficient) one might therefore be reminded of the famous isoperimetric inequality bounding the surface area
of a set by a function of the volume (see [6]).

Example 3.10. Considering that all results established in this section - in particular Theorem 3.1 linking
Kendall’ 𝜏 with the length profile and Theorem 3.5 interrelating 𝜏 with the surface - have only been stated
and proved for mutually completely dependent copulas, the question naturally arises, if they can be extended
to classes larger than or different to 𝒞𝑚𝑐𝑑. Since one naturally might conjecture that eq. (11) and eq. (14)
additionally hold (at least) for sufficiently smooth copulas, complementing the results in [1] we now focus
on the latter identity and show that it does not even hold for the product copula Π. First of all notice that
because of 𝜏(Π) = 0 the right hand-side of eq. (14) simplifies to

√
2− 2

√
2− 1−

√
3

4
(1− 𝜏(Π)) =

√
2

2
+

1 +
√
3

4
≈ 1.3901 ∈

[︂
1 +

√
3

2
,
√
2

]︂
.

On the other hand, calculating surf(Π) according to eq. (12) yields

surf(Π) =

∫︁
[0,1]2

√︀
𝐾Π(𝑥, [0, 𝑦])2 +𝐾Π𝑡(𝑦, [0, 𝑥])2 + 1 𝑑𝜆2(𝑥, 𝑦)

=

∫︁
[0,1]2

√︀
𝑦2 + 𝑥2 + 1 𝑑𝜆2(𝑥, 𝑦).

The latter integral can be calculated analytically and after some tedious but straightforward steps one finally
gets

surf(Π) =
6
√
3− 𝜋

18
+ arsinh

(︂
1√
2

)︂
+

1

36
log (1351 + 780

√
3)⏟  ⏞  

≈1.2808

<
1 +

√
3

2
≈ 1.3660.

In other words: Eq. (14) does not hold for Π and, more surprisingly, there is no element of 𝒞𝑚𝑐𝑑 whose surface
is at least close to surf(Π) - for every element 𝐴ℎ of 𝒞𝑚𝑐𝑑 the difference surf(𝐴ℎ) − surf(Π) is even larger
than the diameter of the full range of surf restricted to 𝒞𝑚𝑐𝑑. Notice that this observation does not contradict
the fact that 𝒞𝑚𝑐𝑑 is dense in (𝒞, 𝑑∞) and that consequently for every copula 𝐴 ∈ 𝒞 there exists some
sequence (𝐴ℎ𝑛

)𝑛∈N in 𝒞𝑚𝑐𝑑 with lim𝑛→∞ 𝑑∞(𝐴ℎ𝑛
, 𝐴) = 0 and lim𝑛→∞ 𝜏(𝐴ℎ𝑛

) = 𝜏(𝐴). In fact, pointwise
convergence of copulas does not imply convergence of the sequence (𝐾𝐴ℎ𝑛

(𝑥, [0, 𝑦]))𝑛∈N to 𝐾𝐴(𝑥, [0, 𝑦]) for a
sufficiently large set of (𝑥, 𝑦) ∈ [0, 1]2 (see [16] for a related discussion), hence (as illustrated by Π above) the
corresponding surface areas may be quite different.

Example 3.10 implies that the mapping 𝐴 ↦→ surf(𝐴) assigning each copula its surface area is not contin-
uous on the full domain 𝒞 with respect to 𝑑∞; according to Corollary 3.6, however, its restriction to 𝒞𝑚𝑐𝑑

is continuous. Intuitively this is not too surprising since - contrary to the general case where the integrand√︀
𝐾𝐴(𝑥, [0, 𝑦])2 +𝐾𝐴𝑡(𝑦, [0, 𝑥])2 + 1 may attain arbitrary values in [1,

√
3] - in the mutually completely de-

pendent setting the kernels only attain the values 0 and 1, so the integrand is a step function only attaining
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the values 1,
√
2 and

√
3.

One natural question therefore would be, whether there are stronger topologies 𝒪 on 𝒞 with respect to which
the mapping 𝐴 ↦→ surf(𝐴) is indeed continuous. And, in the positive case, if there are ‘nice’ subclasses which
are dense in (𝒞,𝒪). We will provide a positive answer to both questions and start with recalling a stronger
notion of convergence of copulas going back to [11] as well as the concept of checkerboard approximations.

Definition 3.11 ([11]). Suppose that 𝐴,𝐴1, 𝐴2, . . . are copulas and let 𝐾𝐴,𝐾𝐴1
,𝐾𝐴2

, . . . be (versions of)
the corresponding Markov kernels. We will say that (𝐴𝑛)𝑛∈N converges weakly conditional to 𝐴 if, and only
if for 𝜆-almost every 𝑥 ∈ [0, 1] we have that the sequence (𝐾𝐴𝑛

(𝑥, ·))𝑛∈N of probability measures on ℬ([0, 1])
converges weakly to the probability measure 𝐾𝐴(𝑥, ·).

Following [13] we can define checkerboard copulas as follows: Fix 𝑁 ∈ N and define the squares 𝑅𝑁
𝑖𝑗 for

𝑖, 𝑗 ∈ {1, . . . , 𝑁} by

𝑅𝑁
𝑖𝑗 =

[︂
𝑖− 1

𝑁
,
𝑖

𝑁

]︂
×
[︂
𝑗 − 1

𝑁
,
𝑗

𝑁

]︂
.

Definition 3.12 ([13, 16]). A copula 𝐴𝑁 ∈ 𝒞 is called 𝑁-checkerboard copula, if 𝐴𝑁 is absolutely continuous
and (a version of) its density 𝑘𝐴𝑁

is constant on the interior of each square 𝑅𝑁
𝑖𝑗 . We refer to 𝑁 as the resolution

of 𝐴𝑁 , denote the set of all 𝑁−checkerboard copulas by 𝒞ℬ𝑁 , and set 𝒞ℬ =
⋃︀∞

𝑁=1 𝒞ℬ𝑁 .
For 𝐴 ∈ 𝒞 and 𝑁 ∈ N the (absolutely continuous) copula 𝐶𝐵𝑁 (𝐴) ∈ 𝒞ℬ𝑁 , defined by

𝐶𝐵𝑁 (𝐴)(𝑥, 𝑦) :=

𝑥∫︁
0

𝑦∫︁
0

𝑁2
𝑁∑︁

𝑖,𝑗=1

𝜇𝐴(𝑅𝑁
𝑖𝑗 )1𝑅𝑁

𝑖𝑗
(𝑠, 𝑡) 𝑑𝜆(𝑡)𝑑𝜆(𝑠) (16)

is called 𝑁-checkerboard approximation of 𝐴 or simply 𝑁 -checkerboard of 𝐴.

Having that, the following approximation result for the mapping 𝐴 ↦→ surf(𝐴), saying that checkerboard
approximations also serve as surface approximations, can be proved.

Theorem 3.13. Let 𝐴 ∈ 𝒞 be an arbitrary copula and 𝐶𝐵𝑁 (𝐴) the 𝑁-checkerboard approximation on 𝐴.
Then the following identity holds:

lim
𝑁→∞

surf (𝐶𝐵𝑁 (𝐴)) = surf (𝐴) (17)

Proof. According to [13, Corollary 3.2] the sequence (𝐶𝐵𝑁 (𝐴))𝑁∈N converges weakly conditional to 𝐴 for
𝑁 → ∞ and the same is true for the sequence (𝐶𝐵𝑁 (𝐴𝑡))𝑁∈N and 𝐴𝑡. Considering 𝐶𝐵𝑁 (𝐴𝑡) = (𝐶𝐵𝑁 (𝐴))𝑡

we can proceed as follows: Let Λ ∈ ℬ([0, 1]) denote a set with 𝜆(Λ) = 1 such that for every 𝑥 ∈ Λ the sequence
(𝐾𝐶𝐵𝑁 (𝐴)(𝑥, ·))𝑁∈N converges weakly to 𝐾𝐴(𝑥, ·) and let 𝑥 ∈ Λ be arbitrary but fixed. Then we have

lim
𝑁→∞

𝐾𝐶𝐵𝑁 (𝐴)(𝑥, [0, 𝑦]) = 𝐾𝐴(𝑥, [0, 𝑦])

for every continuity point 𝑦 ∈ [0, 1] of the function 𝑧 ↦→ 𝐾𝐴(𝑥, [0, 𝑧]), so in particular for 𝜆-almost every
𝑦 ∈ [0, 1]. Moreover, since (by disintegration) for 𝜆-almost every 𝑦 ∈ [0, 1] we have 𝐾𝐴𝑡(𝑦, {𝑥}) = 0 it follows
that for 𝜆-almost every 𝑦 ∈ [0, 1] the point 𝑥 is a continuity point of the function 𝑧 ↦→ 𝐾𝐴𝑡(𝑦, [0, 𝑧]), which
implies that for 𝜆-almost every 𝑦 ∈ [0, 1]

lim
𝑁→∞

𝐾𝐶𝐵𝑁 (𝐴)𝑡(𝑦, [0, 𝑥]) = 𝐾𝐴𝑡(𝑦, [0, 𝑥])

holds. Having this, using Fubini’s theorem and dominated convergence we conclude that

lim
𝑁→∞

∫︁
[0,1]

√︁
𝐾𝐶𝐵𝑁 (𝐴)(𝑥, [0, 𝑦])

2 +𝐾𝐶𝐵𝑁 (𝐴)𝑡(𝑦, [0, 𝑥])
2 + 1 𝑑𝜆(𝑦)

=

∫︁
[0,1]

√︀
𝐾𝐴(𝑥, [0, 𝑦])2 +𝐾𝐴𝑡(𝑦, [0, 𝑥])2 + 1 𝑑𝜆(𝑦).
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Considering that 𝑥 ∈ Λ was arbitrary and that 𝜆(Λ) = 1, again using dominated convergence completes the
proof.

Remark 3.14. Theorem 3.13 remains valid if instead of checkerboards we consider so-called checkmin copulas
in which case shrunk versions of 𝑀 instead of Π constitute the mass distributions in the little squares 𝑅𝑁

𝑖𝑗

(again see [13]). Contrary to checkerboards, working with checkmin copulas the integrand in eq. (12) is again a
step function (as it is the case for all shuffles). Checkmin copulas are closely liked to equidistant even shuffles
(a.k.a. classical shuffles of 𝑀) - in fact, using Birkhoff’s famous theorem (see [9]) it is straightforward to
show that each checkmin copula with resolution 𝑁 can be expressed as convex combination of finitely many
equidistant even shuffles (with 𝑁 stripes). The reason for considering checkerboards in Theorem 3.13 is that
they are more commonly encountered than checkmins.

4 Calculating 𝜏, ℓ and surf for mutually completely dependent
copulas with self-similar support

Calculating even standard characteristics like Kendall’s 𝜏 for copulas with fractal supports is a difficult
endeavor. As a (playful) by-product of the identities established in the previous section we now show how
simple formulas for 𝜏, ℓ and surf of mutually completely dependent copulas with self-similar support can be
derived. We first recall the notion of so-called transformation matrices and the construction of copulas with
fractal/self-similar support, then use these tools to construct mutually completely dependent copulas with
self-similar support and finally derive simple expressions for Kendall’s 𝜏 and the length measure of copulas of
this type.

Definition 4.1 ([8, 16, 17]). An 𝑛×𝑚- matrix 𝑇 = (𝑡𝑖𝑗)𝑖=1...𝑛, 𝑗=1...𝑚 is called transformation matrix if it
fulfills the following four conditions: (i) max(𝑛,𝑚) ≥ 2, (ii), all entries are non-negative, (iii)

∑︀
𝑖,𝑗 𝑡𝑖𝑗 = 1,

and (iv) no row or column has all entries 0.

In other words, a transformation matrix is a probability distribution 𝜏 on (ℐ, 2ℐ) with ℐ = 𝐼1 × 𝐼2, 𝐼1 =

{1, . . . , 𝑛} and 𝐼2 = {1, . . . ,𝑚}, such that 𝜏({𝑖}×𝐼2) > 0 for every 𝑖 ∈ 𝐼1 and 𝜏(𝐼1×{𝑗}) > 0 for every 𝑗 ∈ 𝐼2.
Given a transformation matrix 𝑇 define the vectors (𝑎𝑗)

𝑚
𝑗=0, (𝑏𝑖)

𝑛
𝑖=0 of cumulative column and row sums by

𝑎0 = 𝑏0 = 0

𝑎𝑗 =
∑︁
𝑗0≤𝑗

𝑛∑︁
𝑖=1

𝑡𝑖𝑗 𝑗 ∈ {1, . . . ,𝑚} (18)

𝑏𝑖 =
∑︁
𝑖0≤𝑖

𝑚∑︁
𝑗=1

𝑡𝑖𝑗 𝑖 ∈ {1, . . . , 𝑛}.

Considering that 𝑇 is a transformation matrix both (𝑎𝑗)
𝑚
𝑗=0 and (𝑏𝑖)

𝑛
𝑖=0 are strictly increasing. Consequently

𝑅𝑗𝑖 := [𝑎𝑗−1, 𝑎𝑗 ] × [𝑏𝑖−1, 𝑏𝑖] are compact non-empty rectangles for every 𝑗 ∈ {1, . . . ,𝑚} and 𝑖 ∈ {1, . . . , 𝑛}.
Defining the contraction 𝑤𝑗𝑖 : [0, 1]

2 → 𝑅𝑗𝑖 by

𝑤𝑗𝑖(𝑥, 𝑦) =
(︀
𝑎𝑗−1 + 𝑥(𝑎𝑗 − 𝑎𝑗−1) , 𝑏𝑖−1 + 𝑥(𝑏𝑖 − 𝑏𝑖−1)

)︀
therefore yields the IFSP {[0, 1]2, (𝑤𝑗𝑖)𝑗=1...𝑚,𝑖=1...𝑛, (𝑡𝑖𝑗)𝑗=1...𝑚,𝑖=1...𝑛}. The induced operator 𝑉𝑇 on 𝒫𝒞 ,
given by

𝑉𝑇 (𝜇) :=

𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑡𝑖𝑗 𝜇
𝑤𝑗𝑖 (19)

is easily verified to be well-defined (i.e., it maps 𝒫𝒞 into itself, again see [17, 8, 16]) - in the sequel we will
therefore also consider 𝑉𝑇 as a transformation mapping 𝒞 into itself. According to [16] for every transformation
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matrix 𝑇 there exists a unique copula 𝐴*
𝑇 with 𝑉𝑇 (𝐴

*
𝑇 ) = 𝐴*

𝑇 such that

lim
𝑛→∞

𝐷1(𝑉
𝑛
𝑇 (𝐵), 𝐴*

𝑇 ) = 0 (20)

holds for arbitrary 𝐵 ∈ 𝒞 (i.e., 𝐴*
𝑇 is the unique, globally attractive fixed point of 𝑉𝑇 ).

Suppose now that 2 ≤ 𝑁 ∈ N and let 𝜋 be a permutation of {1, . . . , 𝑁}. Then the matrix 𝑇𝜋 =

(𝑡𝑖𝑗)𝑖=1...𝑁, 𝑗=1...𝑁 , defined by

𝑡𝑖,𝑗 =
1

𝑁
1{𝑗}(𝜋(𝑖)), 𝑖, 𝑗 ∈ {1, . . . , 𝑁}

is obviously a transformation matrix. To simplify notation we will simply write 𝑉𝜋 := 𝑉𝑇𝜋
as well as

𝐴*
𝑇𝜋

= 𝐴*
𝑇 in the sequel. Obviously 𝑉𝜋 does not only map 𝒞 to 𝒞 but also 𝒞𝑚𝑐𝑑 to 𝒞𝑚𝑐𝑑. Considering that

(see [16]) 𝒞𝑐𝑑 is closed in (𝒞, 𝐷1) using eq. (20) it follows immediately that 𝐴*
𝜋 ∈ 𝒞𝑚𝑐𝑑, so there exists some

𝜆-preserving bijection ℎ*𝜋 with 𝐴*
𝜋 = 𝐴ℎ* . Since the support of 𝐴*

𝜋 is self-similar it seems intractable to
calculate ℓ(𝐴*

𝜋), surf(𝐴*
𝜋) and 𝜏(𝐴*

𝜋) for general 𝜋. The results established in the previous section, however,
make it possible to derive simple expressions for both quantities.

We start with a simple illustrative example and then prove the general result (in a different manner).

Example 4.2. Consider 𝑁 = 3 and the permutation 𝜋 = (1, 3, 2). Since, firstly, 𝐴*
𝜋 ∈ 𝒞𝑚𝑐𝑑, secondly, 𝐴*

𝜋 is
globally attractive, and since, thirdly, lim𝑛→∞ 𝜏(𝑉 𝑛

𝜋 (𝑀)) = 𝜏(𝐴*
𝜋) implies lim𝑛→∞ 𝜆2(Ω

𝑉 𝑛
𝜋 (𝑀)√
2

) = 𝜆2(Ω
𝐴*

𝜋√
2
),

it suffices to calculate 𝜆2

(︁
Ω𝐴𝜋*√

2

)︁
which can be done as follows: Obviously we have (see Figure 2 for an

illustration of the steps 3-6 in the construction)

𝜆2

(︁
Ω
𝑉𝜋(𝑀)√
2

)︁
=

1

9

𝜆2

(︁
Ω
𝑉 2
𝜋 (𝑀)√
2

)︁
=

1

9
+ 3

1

92
=

1

9

(︁
1 +

1

3

)︁
𝜆2

(︁
Ω
𝑉 3
𝜋 (𝑀)√
2

)︁
=

1

9
+ 3

1

92
+ 9

1

272
=

1

9

(︁
1 +

1

3
+

1

32

)︁
... =

...

𝜆2

(︁
Ω
𝑉 𝑛
𝜋 (𝑀)√
2

)︁
=

1

9

(︁
1 +

1

3
+ . . .+

1

3𝑛−1

)︁
which yields

𝜆2

(︁
Ω𝐴𝜋*√

2

)︁
=

1

9

1

1− 1
3

=
1

6
.

Having that, using eqs. (6), (10) and (14) shows

ℓ(𝐴*
𝜋) = 1− (2−

√
2)

1

6
, 𝜏(𝐴*

𝜋) = 1− 4
1

6
=

1

3

as well as
surf(𝐴*

𝜋) =
√
2−

(︁
2
√
2− 1−

√
3
)︁
1

6
.

Theorem 4.3. Suppose that 𝑁 ≥ 2 and that 𝜋 is a permutation of {1, . . . , 𝑁}. Then the following identities
hold for the copula 𝐴*

𝜋 with self-similar support:

𝜏
(︀
𝐴*
𝜋

)︀
= 1− 4

𝑁

𝑁 − 1
𝜆2

(︁
Ω
𝑉𝜋(𝑀)√
2

)︁
(21)

= 1− 4
1

𝑁(𝑁 − 1)
#
{︁
(𝑖, 𝑗) ∈ {1, . . . , 𝑁}2 : 𝜋(𝑖) < 𝑗 and 𝜋−1(𝑗) < 𝑖

}︁
ℓ
(︀
𝐴*
𝜋

)︀
= 1− (2−

√
2)

𝑁

𝑁 − 1
𝜆2

(︁
Ω
𝑉𝜋(𝑀)√
2

)︁
(22)
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Fig. 2: Supports of the copulas 𝑉 𝑛
𝜋 (𝑀) (black line segments) and the corresponding sets Ω

𝑉 𝑛
𝜋 (𝑀)

0 (magenta squares),

Ω
𝑉 𝑛
𝜋 (𝑀)√
2

(green squares) for 𝑛 ∈ {3, 4, 5, 6} and 𝜋 = (1, 3, 2) as considered in Example 4.2.

= 1− (2−
√
2)

1

𝑁(𝑁 − 1)
#
{︁
(𝑖, 𝑗) ∈ {1, . . . , 𝑁}2 : 𝜋(𝑖) < 𝑗 and 𝜋−1(𝑗) < 𝑖

}︁
surf

(︀
𝐴*
𝜋

)︀
=

√
2−

(︁
2
√
2− 1−

√
3
)︁

𝑁

𝑁 − 1
𝜆2

(︁
Ω
𝑉𝜋(𝑀)√
2

)︁
(23)

Proof. First of all notice that for every 𝐴ℎ ∈ 𝒞𝑚𝑐𝑑 we have

𝜆2

(︁
Ω
𝑉𝜋(𝐴ℎ)√
2

)︁
= 𝜆2

(︁
Ω
𝑉𝜋(𝑀)√
2

)︁
+

1

𝑁
𝜆2

(︁
Ω𝐴ℎ√

2

)︁
. (24)

Since 𝐴*
𝜋 = 𝐴ℎ* for some 𝜆-preserving bijection ℎ* and since 𝑉𝜋(𝐴

*
𝜋) = 𝐴*

𝜋 holds, eq. (24) implies

𝜆2

(︁
Ω
𝐴*

𝜋√
2

)︁
= 𝜆2

(︁
Ω
𝑉𝜋(𝑀)√
2

)︁
+

1

𝑁
𝜆2

(︁
Ω
𝐴*

𝜋√
2

)︁
,
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from which we conclude
𝜆2

(︁
Ω
𝐴*

𝜋√
2

)︁
=

𝑁

𝑁 − 1
𝜆2

(︁
Ω
𝑉𝜋(𝑀)√
2

)︁
.

Having this, the desired identities follow by applying eqs. (6), (10), and (14).

We conclude the paper with the following example.

Example 4.4. Consider 𝑁 = 4 and the permutation 𝜋 = (3, 1, 4, 2). Figure 3 depicts the first four steps in
the construction process of the corresponding copula 𝐴*

𝜋. Since in this case we have

𝜆2

(︁
Ω
𝑉𝜋(𝑀)√
2

)︁
=

3

16
,

applying Theorem 4.3 directly yields

𝜏(𝐴*
𝜋) = 0, ℓ(𝐴*

𝜋) =
1

2
+

√
2

4

as well as

surf(𝐴*
𝜋) =

√
2

2
+

1

4
+

√
3

4
.

5 Conclusion and outlook

As main results of the paper we have established affine interrelations between Kendall’ 𝜏 , the length profile
(as introduced in [1]), and the surface area of mutually completely dependent bivariate copulas. Additionally,
we have shown that these interrelations do not carry over to the full class 𝒞 of all bivariate copulas, in fact
they do not even hold for the product copula Π. A small application of the derived identities to the calculation
of Kendall’s 𝜏 , the length measure and the surface of mutually completely dependent copulas with self-similar
support rounds off the paper.
Related natural open questions which we plan to tackle in the future are in particular the following two:
(i) Is it possible to extend eq. (14) linking Kendall’s 𝜏 and surf to the multivariate setting? Notice that for
𝑑-dimensional completely dependent copulas with 𝑑 ≥ 3 (see, e.g., [7] for a definition and some properties)
the integrand of the surface integral is a step function again which will, however, attain up to 𝑑+ 1 distinct
values, so expressing the surface area solely in terms of the Lebesgue measure of one single set will most likely
not be possible.
(ii) According to Remark 3.9 the two most well-known concordance measures can (at least on a dense subclass)
be interpreted geometrically in terms of surface and volume, respectively. It remains to be analyzed if other
concordance measures allow for nice geometric interpretations as well.

Acknowledgement
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Fig. 3: Supports of the copulas 𝑉 𝑛
𝜋 (𝑀) (black line segments) and the corresponding sets Ω

𝑉 𝑛
𝜋 (𝑀)

0 (magenta) and

Ω
𝑉 𝑛
𝜋 (𝑀)√
2

(green) for 𝑛 ∈ {1, 2, 3, 4} and 𝜋 = (3, 1, 4, 2) as considered in Example 4.4.
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