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Contents & Schedule

• Quick introduction to packages and datasets of our session

• Introduction, examples and exercises of dplyr

• Introduction, examples and exercises of lubridate

• Final exercise merging our knowledge on dplyr and lubridate

• Final questions & feedback on our session
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The package dplyr can be used for data transformation and 
to do basic (mostly univariate) statistics of variables.

• Types of variables: boolean, categorial (unsorted and sorted), metric

• Important terms to know: value, vector, variable, dataset

• Functions of dplyr require "tidy data"

o Each variable is in its own collumn

o Each observation/case is in its own row

• Functions of dplyr work with pipes: x %>% f(y)

The package lubridate helps us to work with dates and times and to do basic maths
like calculating periods, durations or intervals.
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What is this session all about?



Which data are we working with?

Let's go to New York City! And also leave from there...

✈ We use the public dataset "nycflights13" - please load in RStudio!

✈ 336 776 observations of 19 variables

✈ Includes different types of variables for dplyr as well as times and dates for lubridate
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dplyr



Why do we want to use dplyr?

Operations of dplyr can also be achieved using basic R functions. 

However, advantages of dplyr are:

• More efficient processing

• Intuitive syntax

• Use of tidyverse pipe operator allows for easy chaining of 
operations
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Grouping & Summarising Cases

• Calculate the number of cases for a category by using count().

• Use group_by() to get a new table based on a categorial variable.
Any dplyr functions are applied seperately for these groups and 
the results are displayed in a newly created table.

• Create a table on indicators you need for a specific variable by
using summarise(). The function applies multiple sub-functions.

• Very convenient to combine summarise() and group_by() to show
differences between case groups, e. g. experimental group and 
control group in laboratory experiments.
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summarise()-Function

• summarise_all(): Applies a summary function to all columns/variables.

• summarise_at(): Applies a summary function to selected columns
based on conditions specified by vars() or a list of column names.

• summarise_if(): Applies a summary function to columns that meet
specific conditions specified by a predicate function.

Within summarise()-function:

o Basic information: sum(), n(), first(), last(),

o Central tendency: mean(), median(), weighted.mean()

o Distribution: sd(), var()

o Variability: min(), max(), quantile(), IQR(), range()
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Manipulate Cases

• Extract cases:

o filter() to select on logical criteria

o distinct() to remove rows with duplicates

o sample_frac() and sample_n() for a data sample 
(fraction or specific sample size)

o slice() and top_n() to select rows by their position
or the top n entries

• Arrange cases with arrange() (low to high), 
include desc() if high to low

• Add one more more rows to data table: add_row()
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Manipulate Variables: Extracting

• pull() extracts the values of a column/variable as a vector.

• select() and select_if() extracts them as a whole column/variable.
You can also select more variables at once (then: table!)
You can refine your selection more precisely by including:
contains(), starts_with(), ends_with(), matches(), one_of(),...
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Manipulate Variables: Adding

• mutate() to compute new columns based on existing ones.

• transmute() to compute new columns and drop (all) old ones.

• mutate_all() to apply a function to all columns (e.g. log).

• mutate_at() to apply a function when specific conditions are met.
You can refine your selection just as with select().

• rename() columns to give new names to your variables.
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Exercise 1: Working with cases

• Count flights departing from each of the three airports.

• Group the dataset by the airports of New York City ("origin"). Summarise
the data for each airport in a nice table by storing the average delay at 
arrival and standard deviation for each of them.
Hint: There are missing values. Include "na.rm = TRUE" as an argument when
calculating the mean and standard deviation.

• Add a new boolean variable to the dataset if a flight was delayed.
Hint: A flight is delayed when "arr_delay" is positive ( >0 !).
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Combining Data

• bind_rows()is a function in R used to combine multiple data frames by
row-wise concatenation.
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• Matches columns by name,ensuring
proper alignment

• places one table "under" another



Combining Data bind_rows()
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Combining Data

• bind_cols() is a function in the dplyr package used to bind multiple data
frames column-wise.

• combine datasets without altering their row order.

• when we horizontally combine data frames by position both data frames must
have the same number of rows
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• puts one table "to the right" of the
other



Combining Data bind_cols()
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Combining Data

• union() is a function in R used to
combine the rows of two or more
datasets, removing duplicate rows.

• Retains the column names of the
datasets

• returns rows that exist in any of
the tables (duplicates are
excluded)
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Combining Data
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Combining Data

• Union_all() is a function in R 
used to combine rows from
two or more datasets without
removing duplicate rows.

• returns rows that exist in any
of the tables (duplicates
are included)
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Combining Data

• Setdiff() is a function in R used to find the set difference between two vectors
or data frames.

• rows from the first table that are not in the second table
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Combining Data

• intersect() is a function in R used to find the intersection of two vectors or data
frames.
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Combining Data

With joins:
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anti_join

semi_join

inner_join

full_join

left_join

right_join



Combining Data

left_join() keeps all the rows from
the x data fr ame in the resulting
combined data frame. However, it only
keeps the rows from the y data frame 
that have a key value match in 
the x data frame. The values for
columns with no key value match in the
opposite data frame are set to NA.
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Combining Data

• left_join()
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Combining Data

full_join() keeps all the rows from both
data frames in the resulting combined
data frame. The values for columns
with no key value match in the opposite
data frame are set to NA
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Combining Data

inner_join() keeps only the rows from
both data frames that have a key
value match in the opposite data
frame in the resulting combined data
frame.
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Combining Data

right_join() keeps all the rows from
the y data frame in the resulting
combined data frame, and only keep
the rows from the x data frame that
have a key value match in the y data
frame. The values for columns with no
key value match in the opposite data
frame are set to NA.
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Combining Data

• semi_join() is a 'Filtering Join" to filter one table against the rows of another.

• Provides a list of unique rows from the left data frame that have matching rows in the
right data frame.

• The result contains all columns from the left data frame
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Combining Data - Example

• semi_join(): to use a semi-join to filter the airports dataset to show just the origin airports:
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airports %>%

semi_join(flights2, join_by(faa == origin))



Combining Data

• anti_join() is a 'Filtering Join" to filter one table against the rows of another.

• Provides a list of unique rows from the left data frame that do not have matching rows
in the right data frame

• The result contains all columns from the left data frame
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Exercise 2.1

For each plane, determine the temperature and wind speed when it 
departed.

Please use columns from the table flight:

year, time_hour, origin, dest, tailnum, carrier

And from the table weather:

origin, time_hour, temp, wind_speed
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Exercise 2.2

Find rows that are missing from airports by looking for flights that
don’t have a matching destination airport . 
Hint: use anti_join; dest == faa, distinct

Please use columns from the table flight:

year, time_hour, origin, dest, tailnum, carrier
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Custom function

# Define custom method

filter.flights <- function(.data, min_distance, max_distance) {  

filtered_data <- filter(.data, between(distance, min_distance, max_distance))  

return(filtered_data)

}

# Call custom methods

filtered_flights <- flights %>% filter.flights(1000, 2000)
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Define custom mutate(), filter(), arrange(), summarize() functions and reuse them.



lubridate



When do we work with date-time 
data?

Every time we track events or measure/calculate duration of 
activities.

Examples:

• Track transactions

• Analyze intervals of vulcanic eruptions

• Collect timestamps from various IoT sensors
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Time can be tricky.

Does every year have 365 days?

Does every day have 24 hours?

Does every minute have 60 seconds?

Does everyone use the same format for date and time?  
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→ leap years

→ daylight saving

→ leap seconds

→ time zones, 

local differences



What is lubridate?

• Package in the tidyverse ecosystem

• Provides functions and methods for easily creating, manipulating, 
and extracting information from date-time data

• Robust to leap years, daylight savings times, leap seconds and time 
zones
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Timestamps

Three types of data describing date and/or time:

1. A date 

2. A time 

3. A date-time (date + time) 

Each stored as the number of days behind 1970-01-01 UTC and 
seconds behind 00:00:00.
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→ YYYY-MM-DD

→ HH:MM:SS

→ YYYY-MM-DDTHH:MM:SS



Parse Date-times

• Timestamps are often stored as strings

• Lubridate provides methods to parse 
different strings or numbers into date-
time objects

• If not declared otherwise, UTC time 
zone is assumed
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"2024-04-09T18:15:00"

"2024-09-04 18:15:00", tz="CET"

"09/04/2024 6:15pm"

"9th of April ‘24"

"04-2024"



Parse Date-times

ymd_hms("2024-04-09T18:15:00") #[1]  "2024-04-09 18:15:00 UTC"

ydm_hms("2024-09-04 18:15:00", tz="CET") #[1] "2024-04-09 18:15:00 CEST"" 

dmy_hm("09/04/2024 6:15pm") #[1] "2024-04-09 18:15:00 UTC"

dmy("9th of April ‘24") #[1] "2024-04-09"

my("04-2024") #[1] "2024-04-01"
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Method as order of

year (y), month (m), day (d), hour (h), minute (m), second (s)



Parse Date-times
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parse_date_time(x, orders) #custom order

make_datetime(year, month, day, hour, ...) #create date-time

today( ) #get current date

now( ) #get current date-time

as.numeric(ymd("19700102")) #[1] 1

as.numeric(ymd_hms("19700101 00:00:05")) #[1] 5



Get and Set Date-times

# Getter

> date(dt) #[1] "2024-04-09"

> year(dt) #[1] 2024

> month(dt) #[1] 4

> hour(dt) #[1] 18

> am(dt) #[1] FALSE

> leap_year(dt) #[1] TRUE
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As soon as we have our data in date-time format, we can get and set components:

# Setter

> year(dt) <- 2025

> dt #[1] "2025-04-09 18:15:00 UTC"

> month(dt) <- 1

> dt #[1] "2025-01-09 18:15:00 UTC"

> hour(dt) <- 15

> dt #[1] "2025-01-09 15:15:00 UTC"

> dt #[1] "2024-04-09 18:15:00 UTC"



Exercise 3.1 – date-time

Look at the provided dataset 'flights’.

1. Parse the date and departure time to a date-time object and 
store it in the new column 'departure’.

2. Look at the flight in the first row. 

3. Get the year of the flight. Was the year a leap year?

4. On what weekday did the flight depart?
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Time zones

• Default time zone in R is UTC = Coordinated Universal Time 

 → Has no Daylight Saving Time 

• CE(S)T = Central European (Summer) Time

• R incorporates time zones as <continent>/<city> and some 
abbreviations
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Time zones

OlsonNames()   #returns all available time zones

Sys.timezone()   #[1] "Europe/Berlin“

dt <- ymd_hms("2024-04-09 18:00:00", tz="Europe/Berlin")

# display time in different time zone

with_tz(dt, tzone = "US/Eastern") #[1] "2024-04-09 12:00:00 EDT“

# change underlying time

force_tz(dt, tzone = "US/Eastern") #[1] "2024-04-09 18:00:00 EDT"
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Exercise 3.2 – time zones

Look at the provided dataset 'flights’. As in 3.1, look at the flight in 
the first row. 

1. What is the departure time of the flight in your current time zone?

2. Does this expression convert the time zones properly? When 
would you use force_tz()?
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departure_my_tz <- force_tz(departure, tzone = "Europe/Berlin")

with_tz(departure_my_tz, tzone = "America/New_York")



Time Spans

Lubridate introduces three new time span 
classes:

1. Durations measure the seconds starting from 
a starting point

2. Periods track changes in clock times from a 
starting point

3. Intervals are timespans between two distinct 
points in time
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Graphic from 
https://lubridate.tidyverse.org/index.html



Durations

• Represent a fixed length of time measured 
in seconds

• Don’t adjust for leap years, leap seconds, 
DLS and varying month lengths
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Graphic from 
https://lubridate.tidyverse.org/index.html



Durations

dyears(1) #[1] "31557600s (~1 years)"

dmonths(1) #[1] "2629800s (~4.35 weeks)"

duration(num = 1, units = "months") #[1] "2629800s (~4.35 weeks)"

as.duration(ymd("2024-04-09")- ymd("2024-04-04"))

#[1] "432000s (~5 days)“

ymd_hms("2024-04-09 18:00:00", tz="UTC") - dmonths(1)

#[1] "2024-03-10 07:30:00 UTC"
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Helper functions are called as “d” + the pluralized time unit (dyears, dhours, …) :



Periods

• Represent a relative amount of time 
measured in “human” units

• Adjust for leap years, leap seconds, DLS 
and varying month lengths
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Graphic from 
https://lubridate.tidyverse.org/index.html



Periods

years(1) #[1] "1y 0m 0d 0H 0M 0S“

months(1) #[1] "1m 0d 0H 0M 0S"

period(num = 1, units = "months") #[1] "1m 0d 0H 0M 0S"

as.period(ymd("2024-04-09")- ymd("2024-04-04"))

#[1] "5d 0H 0M 0S"

ymd_hms("2024-04-09 18:00:00", tz="UTC") - months(1)

#[1] "2024-03-09 18:00:00 UTC"

09.04.2024 51

Helper functions are called as the pluralized time unit (years, hours, …) :



Intervals

• Represent a specific time span between two 
distinct points in time

• Adjust for leap years, leap seconds, DLS 
and varying month lengths

• Allows for precise divisions with periods and 
durations
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Graphic from 
https://lubridate.tidyverse.org/index.html



Intervals

years(1) / days(1) #[1] 365.25

dyears(1) / ddays(1) #[1] 365.25

start_date <- ymd("2023-04-09")

end_date <- ymd("2024-04-09")

i <- interval(start_date, end_date) #i is 2023-04-09 UTC--2024-04-09 UTC

i / ddays(1) #[1] 366

i <- int_shift(i, years(1))

i / ddays(1) #[1] 365
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Exercise 3.3 - time spans

Look at the provided dataset 'flights’.

1. The duration of each flight is given in minutes by 'air_time’. Calculate the 
arrival time of each flight and store it in the new column 'departure’.

2. Create an Interval for each flight from departure to arrival  and store it in the 
new column 'flight_duration’.

3. The flight in the first row got delayed by three hours. Adapt the interval 
accordingly.

4. Bonus: Do the flights in row 1 and row 2 overlap? Find a suiting method.
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Sources (lubridate)

• https://lubridate.tidyverse.org/

• https://r4ds.had.co.nz/dates-and-times.html

• https://www.datascienceverse.com/data-engineering/lubridate-in-r-practical-
guide-to-handling-and-analyzing-date-time-data/

• https://cran.r-project.org/web/packages/lubridate/lubridate.pdf

• https://nycflights13.tidyverse.org/reference/flights.html

• http://www.trutschnig.net/Slides_WR_03.pdf

Last accessed on 07.04.2024
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Sources (dplyr)

• https://www.r4epi.com/working-with-multiple-data-frames.html

• https://r4ds.hadley.nz/joins

• https://dplyr.tidyverse.org/articles/two-table.html

• https://nyu-cdsc.github.io/learningr/assets/data-
transformation.pdf

• https://md.psych.bio.uni-goettingen.de/mv/unit/dplyr/dplyr.html
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Backup slides
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Exercise 4 – dplyr + lubridate

Look at the provided dataset 'flights’.

What departure times are (un)popular? Plot the distribution of flight 
times change over the course of the day.

Hints:

1. Use pipes to concatenate methods.

2. For each flight, extract the hour of the departure time.

3. Group by hour.
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Time Spans

09.04.2024 59

Allowed arithmetic operations:

Graphic from https://r4ds.had.co.nz/dates-and-times.html



Stamp Date-times

> my_stamp <- stamp("Presentation held on Sunday, Jan 17th, 1999 10:43")

> my_stamp(now())

#[1] "Presentation held on Sunday, Apr 05th, 2024 21:02"
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