
dplyr and lubridate

Olga Mironova, Birgit Mitter and Pia Neuwirth

SE Statistics, Visualization and More Using "R“
April 9th, 2024

Contents & Schedule

• Quick introduction to packages and datasets of our session

• Introduction, examples and exercises of dplyr

• Introduction, examples and exercises of lubridate

• Final exercise merging our knowledge on dplyr and lubridate

• Final questions & feedback on our session

09.04.2024 2

The package dplyr can be used for data transformation and
to do basic (mostly univariate) statistics of variables.

• Types of variables: boolean, categorial (unsorted and sorted), metric

• Important terms to know: value, vector, variable, dataset

• Functions of dplyr require "tidy data"

o Each variable is in its own collumn

o Each observation/case is in its own row

• Functions of dplyr work with pipes: x %>% f(y)

The package lubridate helps us to work with dates and times and to do basic maths
like calculating periods, durations or intervals.

09.04.2024 3

What is this session all about?

Which data are we working with?

Let's go to New York City! And also leave from there...

✈ We use the public dataset "nycflights13" - please load in RStudio!

✈ 336 776 observations of 19 variables

✈ Includes different types of variables for dplyr as well as times and dates for lubridate

09.04.2024 4

dplyr

Why do we want to use dplyr?

Operations of dplyr can also be achieved using basic R functions.

However, advantages of dplyr are:

• More efficient processing

• Intuitive syntax

• Use of tidyverse pipe operator allows for easy chaining of
operations

09.04.2024 6

Grouping & Summarising Cases

• Calculate the number of cases for a category by using count().

• Use group_by() to get a new table based on a categorial variable.
Any dplyr functions are applied seperately for these groups and
the results are displayed in a newly created table.

• Create a table on indicators you need for a specific variable by
using summarise(). The function applies multiple sub-functions.

• Very convenient to combine summarise() and group_by() to show
differences between case groups, e. g. experimental group and
control group in laboratory experiments.

09.04.2024 7

summarise()-Function

• summarise_all(): Applies a summary function to all columns/variables.

• summarise_at(): Applies a summary function to selected columns
based on conditions specified by vars() or a list of column names.

• summarise_if(): Applies a summary function to columns that meet
specific conditions specified by a predicate function.

Within summarise()-function:

o Basic information: sum(), n(), first(), last(),

o Central tendency: mean(), median(), weighted.mean()

o Distribution: sd(), var()

o Variability: min(), max(), quantile(), IQR(), range()

09.04.2024 8

Manipulate Cases

• Extract cases:

o filter() to select on logical criteria

o distinct() to remove rows with duplicates

o sample_frac() and sample_n() for a data sample
(fraction or specific sample size)

o slice() and top_n() to select rows by their position
or the top n entries

• Arrange cases with arrange() (low to high),
include desc() if high to low

• Add one more more rows to data table: add_row()

09.04.2024 9

Manipulate Variables: Extracting

• pull() extracts the values of a column/variable as a vector.

• select() and select_if() extracts them as a whole column/variable.
You can also select more variables at once (then: table!)
You can refine your selection more precisely by including:
contains(), starts_with(), ends_with(), matches(), one_of(),...

09.04.2024 10

Manipulate Variables: Adding

• mutate() to compute new columns based on existing ones.

• transmute() to compute new columns and drop (all) old ones.

• mutate_all() to apply a function to all columns (e.g. log).

• mutate_at() to apply a function when specific conditions are met.
You can refine your selection just as with select().

• rename() columns to give new names to your variables.

09.04.2024 11

Exercise 1: Working with cases

• Count flights departing from each of the three airports.

• Group the dataset by the airports of New York City ("origin"). Summarise
the data for each airport in a nice table by storing the average delay at
arrival and standard deviation for each of them.
Hint: There are missing values. Include "na.rm = TRUE" as an argument when
calculating the mean and standard deviation.

• Add a new boolean variable to the dataset if a flight was delayed.
Hint: A flight is delayed when "arr_delay" is positive (>0 !).

09.04.2024 12

Combining Data

• bind_rows()is a function in R used to combine multiple data frames by
row-wise concatenation.

09.04.2024 13

• Matches columns by name,ensuring
proper alignment

• places one table "under" another

Combining Data bind_rows()

09.04.2024 14

Combining Data

• bind_cols() is a function in the dplyr package used to bind multiple data
frames column-wise.

• combine datasets without altering their row order.

• when we horizontally combine data frames by position both data frames must
have the same number of rows

09.04.2024 15

• puts one table "to the right" of the
other

Combining Data bind_cols()

09.04.2024 16

Combining Data

• union() is a function in R used to
combine the rows of two or more
datasets, removing duplicate rows.

• Retains the column names of the
datasets

• returns rows that exist in any of
the tables (duplicates are
excluded)

09.04.2024 17

Combining Data

09.04.2024 18

Combining Data

• Union_all() is a function in R
used to combine rows from
two or more datasets without
removing duplicate rows.

• returns rows that exist in any
of the tables (duplicates
are included)

09.04.2024 19

Combining Data

• Setdiff() is a function in R used to find the set difference between two vectors
or data frames.

• rows from the first table that are not in the second table

09.04.2024 20

Combining Data

• intersect() is a function in R used to find the intersection of two vectors or data
frames.

09.04.2024 21

Combining Data

With joins:

09.04.2024 22

anti_join

semi_join

inner_join

full_join

left_join

right_join

Combining Data

left_join() keeps all the rows from
the x data fr ame in the resulting
combined data frame. However, it only
keeps the rows from the y data frame
that have a key value match in
the x data frame. The values for
columns with no key value match in the
opposite data frame are set to NA.

09.04.2024 23

Combining Data

• left_join()

09.04.2024 24

Combining Data

full_join() keeps all the rows from both
data frames in the resulting combined
data frame. The values for columns
with no key value match in the opposite
data frame are set to NA

09.04.2024 25

Combining Data

inner_join() keeps only the rows from
both data frames that have a key
value match in the opposite data
frame in the resulting combined data
frame.

09.04.2024 26

Combining Data

right_join() keeps all the rows from
the y data frame in the resulting
combined data frame, and only keep
the rows from the x data frame that
have a key value match in the y data
frame. The values for columns with no
key value match in the opposite data
frame are set to NA.

09.04.2024 27

Combining Data

• semi_join() is a 'Filtering Join" to filter one table against the rows of another.

• Provides a list of unique rows from the left data frame that have matching rows in the
right data frame.

• The result contains all columns from the left data frame

09.04.2024 28

Combining Data - Example

• semi_join(): to use a semi-join to filter the airports dataset to show just the origin airports:

09.04.2024 29

airports %>%

semi_join(flights2, join_by(faa == origin))

Combining Data

• anti_join() is a 'Filtering Join" to filter one table against the rows of another.

• Provides a list of unique rows from the left data frame that do not have matching rows
in the right data frame

• The result contains all columns from the left data frame

09.04.2024 30

Exercise 2.1

For each plane, determine the temperature and wind speed when it
departed.

Please use columns from the table flight:

year, time_hour, origin, dest, tailnum, carrier

And from the table weather:

origin, time_hour, temp, wind_speed

09.04.2024 31

Exercise 2.2

Find rows that are missing from airports by looking for flights that
don’t have a matching destination airport .
Hint: use anti_join; dest == faa, distinct

Please use columns from the table flight:

year, time_hour, origin, dest, tailnum, carrier

09.04.2024 32

Custom function

Define custom method

filter.flights <- function(.data, min_distance, max_distance) {

filtered_data <- filter(.data, between(distance, min_distance, max_distance))

return(filtered_data)

}

Call custom methods

filtered_flights <- flights %>% filter.flights(1000, 2000)

09.04.2024 33

Define custom mutate(), filter(), arrange(), summarize() functions and reuse them.

lubridate

When do we work with date-time
data?

Every time we track events or measure/calculate duration of
activities.

Examples:

• Track transactions

• Analyze intervals of vulcanic eruptions

• Collect timestamps from various IoT sensors

09.04.2024 35

Time can be tricky.

Does every year have 365 days?

Does every day have 24 hours?

Does every minute have 60 seconds?

Does everyone use the same format for date and time?

09.04.2024 36

→ leap years

→ daylight saving

→ leap seconds

→ time zones,

local differences

What is lubridate?

• Package in the tidyverse ecosystem

• Provides functions and methods for easily creating, manipulating,
and extracting information from date-time data

• Robust to leap years, daylight savings times, leap seconds and time
zones

09.04.2024 37

Timestamps

Three types of data describing date and/or time:

1. A date

2. A time

3. A date-time (date + time)

Each stored as the number of days behind 1970-01-01 UTC and
seconds behind 00:00:00.

09.04.2024 38

→ YYYY-MM-DD

→ HH:MM:SS

→ YYYY-MM-DDTHH:MM:SS

Parse Date-times

• Timestamps are often stored as strings

• Lubridate provides methods to parse
different strings or numbers into date-
time objects

• If not declared otherwise, UTC time
zone is assumed

09.04.2024 39

"2024-04-09T18:15:00"

"2024-09-04 18:15:00", tz="CET"

"09/04/2024 6:15pm"

"9th of April ‘24"

"04-2024"

Parse Date-times

ymd_hms("2024-04-09T18:15:00") #[1] "2024-04-09 18:15:00 UTC"

ydm_hms("2024-09-04 18:15:00", tz="CET") #[1] "2024-04-09 18:15:00 CEST""

dmy_hm("09/04/2024 6:15pm") #[1] "2024-04-09 18:15:00 UTC"

dmy("9th of April ‘24") #[1] "2024-04-09"

my("04-2024") #[1] "2024-04-01"

09.04.2024 40

Method as order of

year (y), month (m), day (d), hour (h), minute (m), second (s)

Parse Date-times

09.04.2024 41

parse_date_time(x, orders) #custom order

make_datetime(year, month, day, hour, ...) #create date-time

today() #get current date

now() #get current date-time

as.numeric(ymd("19700102")) #[1] 1

as.numeric(ymd_hms("19700101 00:00:05")) #[1] 5

Get and Set Date-times

Getter

> date(dt) #[1] "2024-04-09"

> year(dt) #[1] 2024

> month(dt) #[1] 4

> hour(dt) #[1] 18

> am(dt) #[1] FALSE

> leap_year(dt) #[1] TRUE

09.04.2024 42

As soon as we have our data in date-time format, we can get and set components:

Setter

> year(dt) <- 2025

> dt #[1] "2025-04-09 18:15:00 UTC"

> month(dt) <- 1

> dt #[1] "2025-01-09 18:15:00 UTC"

> hour(dt) <- 15

> dt #[1] "2025-01-09 15:15:00 UTC"

> dt #[1] "2024-04-09 18:15:00 UTC"

Exercise 3.1 – date-time

Look at the provided dataset 'flights’.

1. Parse the date and departure time to a date-time object and
store it in the new column 'departure’.

2. Look at the flight in the first row.

3. Get the year of the flight. Was the year a leap year?

4. On what weekday did the flight depart?

09.04.2024 43

Time zones

• Default time zone in R is UTC = Coordinated Universal Time

 → Has no Daylight Saving Time

• CE(S)T = Central European (Summer) Time

• R incorporates time zones as <continent>/<city> and some
abbreviations

09.04.2024 44

Time zones

OlsonNames() #returns all available time zones

Sys.timezone() #[1] "Europe/Berlin“

dt <- ymd_hms("2024-04-09 18:00:00", tz="Europe/Berlin")

display time in different time zone

with_tz(dt, tzone = "US/Eastern") #[1] "2024-04-09 12:00:00 EDT“

change underlying time

force_tz(dt, tzone = "US/Eastern") #[1] "2024-04-09 18:00:00 EDT"

09.04.2024 45

Exercise 3.2 – time zones

Look at the provided dataset 'flights’. As in 3.1, look at the flight in
the first row.

1. What is the departure time of the flight in your current time zone?

2. Does this expression convert the time zones properly? When
would you use force_tz()?

09.04.2024 46

departure_my_tz <- force_tz(departure, tzone = "Europe/Berlin")

with_tz(departure_my_tz, tzone = "America/New_York")

Time Spans

Lubridate introduces three new time span
classes:

1. Durations measure the seconds starting from
a starting point

2. Periods track changes in clock times from a
starting point

3. Intervals are timespans between two distinct
points in time

09.04.2024 47

Graphic from
https://lubridate.tidyverse.org/index.html

Durations

• Represent a fixed length of time measured
in seconds

• Don’t adjust for leap years, leap seconds,
DLS and varying month lengths

09.04.2024 48

Graphic from
https://lubridate.tidyverse.org/index.html

Durations

dyears(1) #[1] "31557600s (~1 years)"

dmonths(1) #[1] "2629800s (~4.35 weeks)"

duration(num = 1, units = "months") #[1] "2629800s (~4.35 weeks)"

as.duration(ymd("2024-04-09")- ymd("2024-04-04"))

#[1] "432000s (~5 days)“

ymd_hms("2024-04-09 18:00:00", tz="UTC") - dmonths(1)

#[1] "2024-03-10 07:30:00 UTC"

09.04.2024 49

Helper functions are called as “d” + the pluralized time unit (dyears, dhours, …) :

Periods

• Represent a relative amount of time
measured in “human” units

• Adjust for leap years, leap seconds, DLS
and varying month lengths

09.04.2024 50

Graphic from
https://lubridate.tidyverse.org/index.html

Periods

years(1) #[1] "1y 0m 0d 0H 0M 0S“

months(1) #[1] "1m 0d 0H 0M 0S"

period(num = 1, units = "months") #[1] "1m 0d 0H 0M 0S"

as.period(ymd("2024-04-09")- ymd("2024-04-04"))

#[1] "5d 0H 0M 0S"

ymd_hms("2024-04-09 18:00:00", tz="UTC") - months(1)

#[1] "2024-03-09 18:00:00 UTC"

09.04.2024 51

Helper functions are called as the pluralized time unit (years, hours, …) :

Intervals

• Represent a specific time span between two
distinct points in time

• Adjust for leap years, leap seconds, DLS
and varying month lengths

• Allows for precise divisions with periods and
durations

09.04.2024 52

Graphic from
https://lubridate.tidyverse.org/index.html

Intervals

years(1) / days(1) #[1] 365.25

dyears(1) / ddays(1) #[1] 365.25

start_date <- ymd("2023-04-09")

end_date <- ymd("2024-04-09")

i <- interval(start_date, end_date) #i is 2023-04-09 UTC--2024-04-09 UTC

i / ddays(1) #[1] 366

i <- int_shift(i, years(1))

i / ddays(1) #[1] 365

09.04.2024 53

Exercise 3.3 - time spans

Look at the provided dataset 'flights’.

1. The duration of each flight is given in minutes by 'air_time’. Calculate the
arrival time of each flight and store it in the new column 'departure’.

2. Create an Interval for each flight from departure to arrival and store it in the
new column 'flight_duration’.

3. The flight in the first row got delayed by three hours. Adapt the interval
accordingly.

4. Bonus: Do the flights in row 1 and row 2 overlap? Find a suiting method.

09.04.2024 54

Sources (lubridate)

• https://lubridate.tidyverse.org/

• https://r4ds.had.co.nz/dates-and-times.html

• https://www.datascienceverse.com/data-engineering/lubridate-in-r-practical-
guide-to-handling-and-analyzing-date-time-data/

• https://cran.r-project.org/web/packages/lubridate/lubridate.pdf

• https://nycflights13.tidyverse.org/reference/flights.html

• http://www.trutschnig.net/Slides_WR_03.pdf

Last accessed on 07.04.2024

09.04.2024 55

https://lubridate.tidyverse.org/
https://r4ds.had.co.nz/dates-and-times.html
https://www.datascienceverse.com/data-engineering/lubridate-in-r-practical-guide-to-handling-and-analyzing-date-time-data/
https://www.datascienceverse.com/data-engineering/lubridate-in-r-practical-guide-to-handling-and-analyzing-date-time-data/
https://cran.r-project.org/web/packages/lubridate/lubridate.pdf
https://nycflights13.tidyverse.org/reference/flights.html
http://www.trutschnig.net/Slides_WR_03.pdf

Sources (dplyr)

• https://www.r4epi.com/working-with-multiple-data-frames.html

• https://r4ds.hadley.nz/joins

• https://dplyr.tidyverse.org/articles/two-table.html

• https://nyu-cdsc.github.io/learningr/assets/data-
transformation.pdf

• https://md.psych.bio.uni-goettingen.de/mv/unit/dplyr/dplyr.html

09.04.2024 56

https://www.r4epi.com/working-with-multiple-data-frames.html
https://r4ds.hadley.nz/joins
https://dplyr.tidyverse.org/articles/two-table.html
https://nyu-cdsc.github.io/learningr/assets/data-transformation.pdf
https://nyu-cdsc.github.io/learningr/assets/data-transformation.pdf
https://md.psych.bio.uni-goettingen.de/mv/unit/dplyr/dplyr.html

Backup slides

09.04.2024 57

Exercise 4 – dplyr + lubridate

Look at the provided dataset 'flights’.

What departure times are (un)popular? Plot the distribution of flight
times change over the course of the day.

Hints:

1. Use pipes to concatenate methods.

2. For each flight, extract the hour of the departure time.

3. Group by hour.

09.04.2024 58

Time Spans

09.04.2024 59

Allowed arithmetic operations:

Graphic from https://r4ds.had.co.nz/dates-and-times.html

Stamp Date-times

> my_stamp <- stamp("Presentation held on Sunday, Jan 17th, 1999 10:43")

> my_stamp(now())

#[1] "Presentation held on Sunday, Apr 05th, 2024 21:02"

09.04.2024 60

	dplyr
	Slide 1: dplyr and lubridate
	Slide 2: Contents & Schedule
	Slide 3
	Slide 4: Which data are we working with?
	Slide 5: dplyr
	Slide 6: Why do we want to use dplyr?
	Slide 7: Grouping & Summarising Cases
	Slide 8: summarise()-Function
	Slide 9: Manipulate Cases
	Slide 10: Manipulate Variables: Extracting
	Slide 11: Manipulate Variables: Adding
	Slide 12: Exercise 1: Working with cases
	Slide 13: Combining Data
	Slide 14: Combining Data bind_rows()
	Slide 15: Combining Data
	Slide 16: Combining Data bind_cols()
	Slide 17: Combining Data
	Slide 18: Combining Data
	Slide 19: Combining Data
	Slide 20: Combining Data
	Slide 21: Combining Data
	Slide 22: Combining Data
	Slide 23: Combining Data
	Slide 24: Combining Data
	Slide 25: Combining Data
	Slide 26: Combining Data
	Slide 27: Combining Data
	Slide 28: Combining Data
	Slide 29: Combining Data - Example
	Slide 30: Combining Data
	Slide 31: Exercise 2.1
	Slide 32: Exercise 2.2
	Slide 33: Custom function

	lubridate
	Slide 34: lubridate
	Slide 35: When do we work with date-time data?
	Slide 36: Time can be tricky.
	Slide 37: What is lubridate?
	Slide 38: Timestamps
	Slide 39: Parse Date-times
	Slide 40: Parse Date-times
	Slide 41: Parse Date-times
	Slide 42: Get and Set Date-times
	Slide 43: Exercise 3.1 – date-time
	Slide 44: Time zones
	Slide 45: Time zones
	Slide 46: Exercise 3.2 – time zones
	Slide 47: Time Spans
	Slide 48: Durations
	Slide 49: Durations
	Slide 50: Periods
	Slide 51: Periods
	Slide 52: Intervals
	Slide 53: Intervals
	Slide 54: Exercise 3.3 - time spans

	Sources
	Slide 55: Sources (lubridate)
	Slide 56: Sources (dplyr)

	Backup Slides
	Slide 57: Backup slides
	Slide 58: Exercise 4 – dplyr + lubridate
	Slide 59: Time Spans
	Slide 60: Stamp Date-times

