

ggstatsplot Package

A.G.K.S. Dharmapriya, W.S.P. Dabarera

SE Statistics Visualization and More Using "R" *April 16th, 2024*

Outline

- Why ggstatsplot?
- Setup For the Exercises
- Primary Functions
- Customizability of ggstatsplot
- Misconceptions & Limitations

What is ggstatsplot?

information-rich plots with statistical details, which are $\boxed{2}$ suitable for faster (exploratory) data analysis and scholarly reports

Extension of the ggplot2

Helpful in the Exploration Phase of the Data

Simpler/faster data analysis workflow

Program

In a typical *exploratory* data analysis workflow, data visualization and statistical modeling are two different phases: visualization informs modeling, and modeling can suggest a different visualization, and so on and so forth.

The central idea of ggstatsplot is simple: combine these two phases into one!

Information-rich graphic is worth a thousand words

Graphical Summaries can reveal problems not visible from numerical statistics.

Matejka & Fitzmaurice, Autodesk Research 2017

Standard approach

Pearson's correlation test revealed that, across 142 participants, variable x was negatively correlated with variable y: t(140) = -0.76, p = .446. The effect size (r = -0.06, 95% CI[-.23, .10])was small, as per Cohen's (1988) conventions. The Bayes Factor for the same analysis revealed that the data were 5.81 times more probable under the null hypothesis as compared to the alternative hypothesis. This can be considered moderate evidence (Jeffreys, 1961) in favor of the null hypothesis (absence of any correlation between x and y).

PARIS LODRON UNIVERSITÄT SALZBURG

ggstatsplot approach

Relationship between x and y

 $t_{Student}$ (140) = -0.76, p = 0.446, $\hat{r}_{Pearson}$ = -0.06, $CI_{95\%}$ [-0.23, 0.10], n_{pairs} = 142

ggbetweenstats(
 data = movies_long,
 x = mpaa,
 y = rating
)

Function internally decides tests

- *t*-test if 2 groups
- ANOVA if > 2 groups
- raw data + distributions
 descriptive statistics
 inferential statistics
 effect size + CIs
 pairwise comparisons
 Bayesian hypothesis-testing
 Bayesian estimation

Ready made Plot = No Customization

The grammar of graphics is a powerful framework (Wilkinson, 2011) and can help you make *any* graphics fitting your specific data visualization needs! But...

Need Lot of Customization of Your Choosing

Nice to have a Ready Made Solution in the Exploration Phase

 \sum_{time} (Needed time \uparrow + Likelihood to graphical explore data \downarrow) = Avoidance habit

Consistent API = No Cognitive Fatigue

stats::lm(formula = wt ~ mpg, data = mtcars)

stats::cor(x = mtcars\$wt, y = mtcars\$mpg)

stats::cor.test(formula = ~ wt + mpg, data = mtcars)

Functions in ggstatsplot -

- 🗹 expect dataframe
- 🗹 expect tidy data

🗹 have consistent API (foo(data, x, ...))

One Package to Access It All

Load 'em up!

- 🌾 for inferential statistics (e.g. stats)
- 🌾 computing effect size + Cls (e.g. effectsize)
- 🌾 for descriptives (e.g. skimr)
- 🌾 pairwise comparisons (e.g. multcomp)
- 🌾 Bayesian hypothesis testing (e.g. 🛛 BayesFactor)
- 🌾 Bayesian estimation (e.g. bayestestR)

Things to worry about 🤕

- 😕 accepts dataframe, vectors, matrix?
- 😵 long/wide format data?
- 🤗 works with 🛚 NA s?
- 🦻 returns list, dataframe, arrays?
- 😵 works with tibbles?
- 💫 has all necessary details?

Installation

*

*

¥

Install the stable version of ggstatsplot from CRAN:

install.packages("ggstatsplot")

You can get the development version of the package from Github:

remotes::install_github("IndrajeetPatil/ggstatsplot")

Load the needed packages-

library(ggstatsplot)
library(ggplot2)

Exercises-Datasets

Starwars Dataset

library(dplyr) data("starwars")

^	name 🍦	height 🍦	mass 🍦	hair_color $\ ^{\diamond}$	skin_color \diamond	eye_color 🔅	birth_year 🗘	sex ‡	gender 🍦	homeworld $\hat{}$	species
1	Luke Skywalker	172	77.0	blond	fair	blue	19.0	male	masculine	Tatooine	Human
2	C-3PO	167	75.0	NA	gold	yellow	112.0	none	masculine	Tatooine	Droid
3	R2-D2	96	32.0	NA	white, blue	red	33.0	none	masculine	Naboo	Droid
4	Darth Vader	202	136.0	none	white	yellow	41.9	male	masculine	Tatooine	Human
5	Leia Organa	150	49.0	brown	light	brown	19.0	female	feminine	Alderaan	Human
6	Owen Lars	178	120.0	brown, grey	light	blue	52.0	male	masculine	Tatooine	Human
7	Beru Whitesun Lars	165	75.0	brown	light	blue	47.0	female	feminine	Tatooine	Human
8	R5-D4	97	32.0	NA	white, red	red	NA	none	masculine	Tatooine	Droid
9	Biggs Darklighter	183	84.0	black	light	brown	24.0	male	masculine	Tatooine	Human
10	Obi-Wan Kenobi	182	77.0	auburn, white	fair	blue-gray	57.0	male	masculine	Stewjon	Human

name: Name of the character.

height: Height of the character in centimeters

mass: Weight of the character in kilograms

hair_color, skin_color, eye_color: Hair, skin, and eye colors of the character

birth_year: Year the character was born. BBY stands for Before Battle of Yavin

sex: The biological sex of the character, namely male, female, hermaphroditic, or none (as in the case for Droids).

gender: The gender role or gender identity of the character as determined by their personality or the way they were programmed.

homeworld: Name of the character's homeworld.

species: Name of the character's species.

films: List of films the character appeared in.

vehicles: List of vehicles the character has piloted.

starships: List of starships the character has piloted.

Where to get the Materials?

18

Primary Functions

• ggcorrmat

• ggscatterstats

Primary functions

Hypothesis about group differences

Multiple groups - ggbetweenstats, ggwithinstats
 Single group - gghistostats, ggdotplotstats

1. ggbetweenstats- for between group comparison

- Used to do data exploration.
- It used when we want to see the distribution of a numeric variable across different levels of a categorical variable.
- It provides a combination of a box plot and/or violin plot, along with the results of a statistical test.
- Statistical Details Included.
- Highly Customizable.
- Publication-Ready Plots.

Distribution of sepal length across Iris species

 $F_{\text{Welch}}(2, 92.21) = 138.91, p = 1.51e-28, \widehat{\omega_p^2} = 0.74, \text{Cl}_{95\%} [0.67, 1.00], n_{\text{obs}} = 150$

1. ggbetweenstats- for between group comparison

	title	year	length	budget	rating	votes	mpaa	genre
	<chr></chr>	<int></int>	<int></int>	<db1></db1>	<db1></db1>	<int></int>	<fct></fct>	<fct></fct>
1	Shawshank Redemption, The	<u>1</u> 994	142	25	9.1	<u>149</u> 494	R	Drama
2	Lord of the Rings: The Return of the King, The	<u>2</u> 003	251	94	9	<u>103</u> 631	PG-13	Action
3	Lord of the Rings: The Fellowship of the Ring, The	<u>2</u> 001	208	93	8.8	<u>157</u> 608	PG-13	Action
4	Lord of the Rings: The Two Towers, The	<u>2</u> 002	223	94	8.8	<u>114</u> 797	PG-13	Action
5	Pulp Fiction	<u>1</u> 994	168	8	8.8	<u>132</u> 745	R	Drama
6	Schindler's List	<u>1</u> 993	195	25	8.8	<u>97</u> 667	R	Drama
7	Star Wars	<u>1</u> 977	125	11	8.8	<u>134</u> 640	PG	Action
8	Star Wars: Episode V - The Empire Strikes Back	<u>1</u> 980	129	18	8.8	<u>103</u> 706	PG	Action
9	C'era una volta il West	<u>1</u> 968	158	5	8.7	<u>17</u> 241	PG-13	Drama
0	Cidade de Deus	2002	135	3.3	8.7	25964	R	Drama

Defaults return

- 🗹 raw data + distributions
- descriptive statistics
- 🗹 inferential statistics
- 🗹 effect size + CIs
- 🗹 pairwise comparisons
- 🗹 Bayesian hypothesis-testing
- Bayesian estimation

ggbetweenstats(data = movies_long, x = mpaa, y = rating

Function internally decides tests

- T-test if 2 groups
- ANOVA if >2 groups

22

PARIS

LODRON UNIVERSITÄT

SALZBURG

1. ggbetweenstats-pairwise comparisons

2. ggbetweenstats-Arguments

ggbetweenstats(

```
data,
х,
у,
type = "parametric",
pairwise.display = "significant",
p.adjust.method = "holm",
effsize.type = "unbiased",
bf.prior = 0.707,
bf.message = TRUE,
results.subtitle = TRUE,
xlab = NULL,
ylab = NULL,
caption = NULL,
title = NULL,
subtitle = NULL,
digits = 2L,
var.equal = FALSE,
conf.level = 0.95,
nboot = 100L,
```

tr = 0.2, centrality.plotting = TRUE, centrality.type = type, centrality.point.args = <u>list(size = 5</u>, color = "darkred"), centrality.label.args = <u>list(size = 3</u>, nudge_x = 0.4, segment.linetype = 4, min.segment.length = 0), point.args = <u>list(position = ggplot2::position_jitterdodge(dodge.width = 0.6), 0.4, size = 3, stroke = 0, na.rm = TRUE), boxplot.args = <u>list(width = 0.3</u>, alpha = 0.2, na.rm = TRUE), violin.args = <u>list(width = 0.5</u>, alpha = 0.2, na.rm = TRUE), ggsignif.args = <u>list(textsize = 3</u>, tip_length = 0.01, na.rm = TRUE), ggtheme = ggstatsplot::<u>theme_ggstatsplot()</u>, package = "RColorBrewer", palette = "Dark2", ggplot.component = NULL,</u>

https://indrajeetpatil.github.io/ggstatsplot/reference/ggbetweenstats.html

2. ggwithinstats-repeated measures equivalent

- Used to do data exploration.
- It is used when we want to see the distribution of a numeric variable across different levels of a categorical variable within the same subject.
- It provides a combination of a box plot and/or violin plot, along with the results of a statistical test.
- Statistical Details Included.
- Highly Customizable.
- Publication-Ready Plots.

2. ggwithinstats

Defaults return

- 🗹 raw data + distributions
- descriptive statistics
- 🗹 inferential statistics
- 🗹 effect size + CIs
- 🗹 pairwise comparisons
- 🗹 Bayesian hypothesis-testing
- 🗹 Bayesian estimation

> WRS2::WineTasting Taste Wine Taster

	Taste	WII	ie	Taste
1	5.40	Wine	А	
2	5.50	Wine	В	
3	5.55	Wine	С	
4	5.85	Wine	А	
5	5.70	Wine	В	
6	5.75	Wine	С	
7	5.20	Wine	А	
8	5.60	Wine	В	
9	5.50	Wine	С	
10	5.55	Wine	А	
11	5.50	Wine	В	

3

```
ggwithinstats(
data = WRS2::WineTasting,
x = Wine,
y = Taste
)
```

Function internally decides tests

- T-test if 2 groups
- ANOVA if >2 groups

ggwithinstats-Example 2.

Question: How does the desire to kill bugs vary across different conditions (LDLF, LDHF, HDLF, HDHF) within the same individual in the bugs long dataset?

<pre>> bugs_long # A tibble: 372 × 6 subject gender region education condition desire</pre>					
<pre># A tibble: 372 × 6 subject gender region education condition desire <int> <fct> <fct> <chr> <dbl> 1 1 Female North America some LDLF 6 2 2 Female North America advance LDLF 10 3 3 Female Europe college LDLF 5 4 4 Female North America college LDLF 6 5 5 Female North America some LDLF 3 6 6 Female Europe some LDLF 2 ggwithinstats(data = bugs_long, # data frame x = condition, # categorical variable(within-subjects factor) y = desire, # numeric variable title = "Desire to Kill Bugs Across Different Conditions", xlab = "Condition", ylab = "Desire to Kill", type = "np", # non-parametric test pairwise.comparisons = TRUE, # show pairwise comparisons pairwise.display = "significant", # only show significant comparison p.adjust.method = "holm" # method for adjusting p values</dbl></chr></fct></fct></int></pre>	> bugs_long				
<pre>subject gender region education condition desire </pre> <pre></pre> <pre>subject gender region education condition desire </pre> <pre></pre> <td># A tibble: 372 × 6</td> <td></td> <td></td> <td></td> <td></td>	# A tibble: 372 × 6				
<pre><int> <fct> <fct> <fct> <chr> <dbl> 1 1 Female North America some LDLF 6 2 2 Female North America advance LDLF 10 3 3 Female Europe college LDLF 5 4 4 Female North America college LDLF 6 5 5 Female North America some LDLF 3 6 6 Female Europe some LDLF 2 ggwithinstats(data = bugs_long, # data frame x = condition, # categorical variable(within-subjects factor) y = desire, # numeric variable title = "Desire to Kill Bugs Across Different Conditions", xlab = "Condition", ylab = "Desire to Kill", type = "np", # non-parametric test pairwise.comparisons = TRUE, # show pairwise comparisons pairwise.display = "significant", # only show significant comparison: p.adjust.method = "holm" # method for adjusting p values</dbl></chr></fct></fct></fct></int></pre>	subject gender r	egion	education	condition	desire
1 1 Female North America some LDLF 6 2 2 Female North America advance LDLF 10 3 3 Female Europe college LDLF 5 4 4 Female North America college LDLF 6 5 5 Female North America college LDLF 3 6 6 Female Europe some LDLF 3 6 6 Female Europe some LDLF 2 ggwithinstats(data = bugs_long, # data frame x condition, # categorical variable(within-subjects factor) y = desire, # numeric variable title = "Desire to Kill Bugs Across Different Conditions", xlab = "Condition", ylab = "Desire to Kill", type = "np", # non-parametric test pairwise.comparisons = TRUE, # show pairwise comparisons pairwise.display = "significant", # only show significant comparison: p.adjust.method = "holm" # method for adjusting p values	<int> <fct> <</fct></int>	fct>	<fct></fct>	<chr></chr>	<db1></db1>
<pre>2 2 Female North America advance LDLF 10 3 3 Female Europe college LDLF 5 4 4 Female North America college LDLF 6 5 5 Female North America some LDLF 3 6 6 Female Europe some LDLF 2 ggwithinstats(data = bugs_long, # data frame x = condition, # categorical variable(within-subjects factor) y = desire, # numeric variable title = "Desire to Kill Bugs Across Different Conditions", xlab = "Condition", ylab = "Desire to Kill", type = "np", # non-parametric test pairwise.comparisons = TRUE, # show pairwise comparisons pairwise.display = "significant", # only show significant comparisons p.adjust.method = "holm" # method for adjusting p values</pre>	1 I Female N	lorth America	some	LDLF	6
<pre>3 3 Female Europe college LDLF 5 4 4 Female North America college LDLF 6 5 5 Female North America some LDLF 3 6 6 Female Europe some LDLF 2 ggwithinstats(data = bugs_long, # data frame x = condition, # categorical variable(within-subjects factor) y = desire, # numeric variable title = "Desire to Kill Bugs Across Different Conditions", xlab = "Condition", ylab = "Desire to Kill", type = "np", # non-parametric test pairwise.comparisons = TRUE, # show pairwise comparisons pairwise.display = "significant", # only show significant comparisons p.adjust.method = "holm" # method for adjusting p values</pre>	2 2 Female N	lorth America	advance	LDLF	10
4 4 Female North America college LDLF 6 5 5 Female North America some LDLF 3 6 6 Female Europe some LDLF 2 ggwithinstats(data = bugs_long, # data frame x = condition, # categorical variable(within-subjects factor) y = desire, # numeric variable title = "besire to Kill Bugs Across Different Conditions", xlab = "Condition", ylab = "Desire to Kill", type = "np", # non-parametric test pairwise.comparisons = TRUE, # show pairwise comparisons pairwise.display = "significant", # only show significant comparisons p.adjust.method = "holm" # method for adjusting p values	3 3 Female E	urope	college	LDLF	5
<pre>5 5 Female North America some LDLF 3 6 6 Female Europe some LDLF 2 ggwithinstats(data = bugs_long, # data frame x = condition, # categorical variable(within-subjects factor) y = desire, # numeric variable title = "Desire to Kill Bugs Across Different Conditions", xlab = "Condition", ylab = "Desire to Kill", type = "np", # non-parametric test pairwise.comparisons = TRUE, # show pairwise comparisons pairwise.display = "significant", # only show significant comparisons p.adjust.method = "holm" # method for adjusting p values</pre>	4 4 Female N	lorth America	college	LDLF	6
<pre>6 6 Female Europe some LDLF 2 ggwithinstats(data = bugs_long, # data frame x = condition, # categorical variable(within-subjects factor) y = desire, # numeric variable title = "Desire to Kill Bugs Across Different Conditions", xlab = "Condition", ylab = "Desire to Kill", type = "np", # non-parametric test pairwise.comparisons = TRUE, # show pairwise comparisons pairwise.display = "significant", # only show significant comparisons p.adjust.method = "holm" # method for adjusting p values</pre>	5 5 Female N	lorth America	some	LDLF	3
<pre>ggwithinstats(data = bugs_long, # data frame x = condition, # categorical variable(within-subjects factor) y = desire, # numeric variable title = "Desire to Kill Bugs Across Different Conditions", xlab = "Condition", ylab = "Desire to Kill", type = "np", # non-parametric test pairwise.comparisons = TRUE, # show pairwise comparisons pairwise.display = "significant", # only show significant comparisons p.adjust.method = "holm" # method for adjusting p values</pre>	6 6 Female E	urope	some	LDLF	2
	<pre>ggwithinstats(data = bugs_long, # x = condition, # cat y = desire, # numeri title = "Desire to K xlab = "Condition", ylab = "Desire to Ki type = "np", # non-p pairwise.comparisons pairwise.display = " p.adjust.method = "h</pre>	data frame cegorical varia ic variable (ill Bugs Acros ill", parametric test s = TRUE, # sho 'significant", nolm" # method	ble(within- s Different w pairwise # only show for adjusti	subjects fa Conditions comparisons significan ng p values	ctor) ", t comparisons

Desire to Kill Bugs Across Different Conditions

 $\chi^2_{\text{Friedman}}(3) = 55.83, p = 4.56\text{e}-12, \widehat{W}_{\text{Kendall}} = 0.21, \text{Cl}_{95\%}[0.17, 1.00], n_{\text{pairs}} = 88$

> dplyr::filter(bugs_long, subject == 1)

# A tibble: 4 ×	6			
subject gender	region	education	condition	desire
<int> <fct></fct></int>	<fct></fct>	<fct></fct>	<chr></chr>	<db1></db1>
1 1 Female	North America	some	LDLF	6
2 1 Female	North America	some	LDHF	6
3 1 Female	North America	some	HDLF	9
4 1 Female	North America	some	HDHF	10

2. ggwithinstats-Arguments

ggwithinstats(

type = "parametric",

bf.prior = 0.707,

bf.message = TRUE,

xlab = NULL,

ylab = NULL,

caption = NULL,

subtitle = NULL,

conf.level = 0.95, nboot = 100L, tr = 0.2,

centrality.plotting = TRUE,

title = NULL,

digits = 2L,

p.adjust.method = "holm",

effsize.type = "unbiased",

results.subtitle = TRUE,

pairwise.display = "significant",

data,

х,

у,

```
PARIS
LODRON
UNIVERSITÄT
SALZBURG
```

```
centrality.type = type,
centrality.point.args = list(size = 5, color = "darkred"),
centrality.label.args = list(size = 3, nudge_x = 0.4, segment.linetype = 4),
centrality.path = TRUE,
centrality.path.args = list(linewidth = 1, color = "red", alpha = 0.5),
point.args = list(size = 3, alpha = 0.5, na.rm = TRUE),
point.path = TRUE,
point.path = TRUE,
point.path.args = list(alpha = 0.5, linetype = "dashed"),
boxplot.args = list(width = 0.2, alpha = 0.5, na.rm = TRUE),
violin.args = list(width = 0.5, alpha = 0.2, na.rm = TRUE),
gsignif.args = list(textsize = 3, tip_length = 0.01, na.rm = TRUE),
ggtheme = ggstatsplot::theme_ggstatsplot(),
package = "RColorBrewer",
palette = "Dark2",
ggplot.component = NULL,
```

https://indrajeetpatil.github.io/ggstatsplot/reference/ggwithinstats.html

3. gghistostats - Distribution of a numerical variable

- It is used for data exploration.
- It used to inspect distribution of a continuous variable.
- It can test its mean is significantly different from a specified value with a one-sample test.
- Publication-Ready histograms.

3. gghistostats - Distribution of a numerical variable

	title <chr></chr>	year <int></int>	length <int></int>	budget <db7></db7>	rating <db7></db7>	votes <int></int>	mpaa <fct></fct>	ger <f< th=""></f<>
1	Shawshank Redemption, The	<u>1</u> 994	142	25	9.1	<u>149</u> 494	R	Dra
2	Lord of the Rings: The Return of the King, The	<u>2</u> 003	251	94	9	<u>103</u> 631	PG-13	Act
3	Lord of the Rings: The Fellowship of the Ring, The	<u>2</u> 001	208	93	8.8	<u>157</u> 608	PG-13	Act
4	Lord of the Rings: The Two Towers, The	<u>2</u> 002	223	94	8.8	<u>114</u> 797	PG-13	Act
5	Pulp Fiction	<u>1</u> 994	168	8	8.8	<u>132</u> 745	R	Dra
6	Schindler's List	<u>1</u> 993	195	25	8.8	<u>97</u> 667	R	Dra
7	Star Wars	<u>1</u> 977	125	11	8.8	<u>134</u> 640	PG	Act
8	Star Wars: Episode V - The Empire Strikes Back	<u>1</u> 980	129	18	8.8	<u>103</u> 706	PG	Act
9	C'era una volta il West	<u>1</u> 968	158	5	8.7	<u>17</u> 241	PG-13	Dra
.0	Cidade de Deus	2002	135	3.3	8.7	25964	R	Dra

Centrality measures

 μ_{mean}

 $\mu_{trimmed}$

 \checkmark "bf" $\rightarrow \mu_{MAP}$

median

- inferential statistics
- effect size + CIs
- Bayesian hypothesis-testing
- Bavesian estimation

data = movies_long, # data frame x = budget, #numerical variable create histogram test.value = 38 #the value that want to compare # the mean of sample (budget).

 $log_{e}(BF_{01}) = -48.00$, $\delta_{difference}^{\text{posterior}} = -8.17$, Cl_{gev}^{ETI} [-9.73, -6.62], $r_{Gauchy}^{JZS} = 0.71$

3. gghistostats-Example

Question: What is the distribution of total sleep time across all mammal species in the msleep dataset, and is the average total sleep time significantly different from 10 hours in msleep dataset?

> ggplot2::msleep

# /	A tibble: 83 x 11										
	name	genus	vore	order	conservation	sleep_total	sleep_rem	sleep_cycle	awake	brainwt	bodywt
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<db1></db1>	<db1></db1>	<db7></db7>	<db1></db1>	<db1></db1>	<db1></db1>
1	Cheetah	Acin	carni	Carn	lc	12.1	NA	NA	11.9	NA	50
2	Owl monkey	Aotus	omni	Prim	NA	17	1.8	NA	7	0.015 <u>5</u>	0.48
3	Mountain beaver	Aplo	herbi	Rode	nt	14.4	2.4	NA	9.6	NA	1.35
4	Greater short-ta	Blar	omni	Sori	lc	14.9	2.3	0.133	9.1	0.000 <u>29</u>	0.019
5	Cow	Bos	herbi	Arti	domesticated	4	0.7	0.667	20	0.423	600
6	Three-toed sloth	Brad	herbi	Pilo	NA	14.4	2.2	0.767	9.6	NA	3.85
7	Northern fur seal	Ca11	carni	Carn	vu	8.7	1.4	0.383	15.3	NA	20.5
8	Vesper mouse	Calo	NA	Rode	NA	7	NA	NA	17	NA	0.045
9	Dog	Canis	carni	Carn	domesticated	10.1	2.9	0.333	13.9	0.07	14
10	Roe deer	Capr	herbi	Arti	lc	3	NA	NA	21	0.0982	14.8

gghistostats(data = msleep, # data frame x = sleep_total, # numeric variable test.value = 10, | # test value type = "parametric", # type of statistical approach title = "Distribution of Total Sleep Time in Mammals", # title for the plot xlab = "Total Sleep Time (hours)" # x-axis label

Distribution of Total Sleep Time in Mammals

3. gghistostats-Arguments

gghistostats(

data, x, binwidth = NULL, xlab = NULL, title = NULL, subtitle = NULL, caption = NULL, type = "parametric", test.value = 0, bf.prior = 0.707, bf.message = TRUE, effsize.type = "g", conf.level = 0.95,

```
tr = 0.2,
digits = 2L,
ggtheme = ggstatsplot::<u>theme_ggstatsplot()</u>,
results.subtitle = TRUE,
bin.args = <u>list(color = "black", fill = "grey50", alpha = 0.7)</u>,
centrality.plotting = TRUE,
centrality.plotting = TRUE,
centrality.type = type,
centrality.line.args = <u>list(color = "blue", linewidth = 1, linetype = "dashed")</u>
normal.curve = FALSE,
normal.curve.args = <u>list(linewidth = 2)</u>,
ggplot.component = NULL,
```

https://indrajeetpatil.github.io/ggstatsplot/reference/gghistostats.html

4. ggdotplotstats-Labeled Numerical Variable

- It is used for data exploration.
- A dot chart with statistical details from one-sample test.
- It used to inspect the distribution of a labeled numeric variable
- This function is a sister function of gghistostats with the difference being it expects a labeled numeric variable.
- Highly Customizable.
- Publication-Ready histograms.

 $log_{e}(BF_{01}) = 0.73$, $\hat{\delta}_{difference}^{\text{costerior}} = 3.58$, $CI_{95\%}^{ETI}$ [-10.24, 15.49], $r_{Cauchy}^{JZS} = 0.71$

4. ggdotplotstats-Labeled Numerical Variable

	title	year	length	budget	rating	votes	mpaa	genre	
	<chr></chr>	<int></int>	<int></int>	<db1></db1>	<db1></db1>	<int></int>	<fct></fct>	<fct></fct>	
1	Shawshank Redemption, The	<u>1</u> 994	142	25	9.1	<u>149</u> 494	R	Drama	
2	Lord of the Rings: The Return of the King, The	<u>2</u> 003	251	94	9	<u>103</u> 631	PG-13	Action	
3	Lord of the Rings: The Fellowship of the Ring, The	<u>2</u> 001	208	93	8.8	<u>157</u> 608	PG-13	Action	
4	Lord of the Rings: The Two Towers, The	<u>2</u> 002	223	94	8.8	<u>114</u> 797	PG-13	Action	
5	Pulp Fiction	<u>1</u> 994	168	8	8.8	<u>132</u> 745	R	Drama	
6	Schindler's List	<u>1</u> 993	195	25	8.8	<u>97</u> 667	R	Drama	
7	Star Wars	1 977	125	11	8.8	<u>134</u> 640	PG	Action	
3	Star Wars: Episode V - The Empire Strikes Back	<u>1</u> 980	129	18	8.8	<u>103</u> 706	PG	Action	
9	C'era una volta il West	<u>1</u> 968	158	5	8.7	<u>17</u> 241	PG-13	Drama	A
)	Cidade de Deus	2002	135	3.3	8.7	25964	R	Drama	
									Ro

ggdotplotstats(

 $log_e(BF_{01}) = 0.73$, $\hat{\delta}_{difference}^{oposterior} = 3.58$, $CI_{95\%}^{ETI}$ [-10.24, 15.49], $r_{Cauchy}^{JZS} = 0.71$

PARIS

R Cis

LODRON

UNIVERSITÄT

SALZBURG

4. ggdotplotstats - Example

Question: What is the distribution of life expectancy across all Asian countries in the gapminder dataset, and is the average life expectancy significantly different from 55 years using a robust statistical approach?

> gapminder::gapminder

# A tibble	: 1,704 × 6
------------	-------------

	country	continent	year	lifeExp	рор	gdpPercap
	<fct></fct>	<fct></fct>	<int></int>	<db1></db1>	<int></int>	<db1></db1>
1	Afghanistan	Asia	<u>1</u> 952	28.8	8 <u>425</u> 333	779.
2	Afghanistan	Asia	<u>1</u> 957	30.3	9 <u>240</u> 934	821.
3	Afghanistan	Asia	<u>1</u> 962	32.0	10 <u>267</u> 083	853.
4	Afghanistan	Asia	<u>1</u> 967	34.0	11 <u>537</u> 966	836.
5	Afghanistan	Asia	<u>1</u> 972	36.1	13 <u>079</u> 460	740.
6	Afghanistan	Asia	<u>1</u> 977	38.4	14 <u>880</u> 372	786.

ggdotplotstats(

```
data = dplyr::filter(gapminder::gapminder, continent == "Asia"),
y = country,
x = lifeExp,
test.value = 55,
type = "robust",
title = "Distribution of life expectancy in Asian continent",
xlab = "Life expectancy"
```


3. ggdotplotstats - Arguments

conf.level = 0.95,

ggdotplotstats(
data,	
х,	tr = 0.2,
у,	digits = 2L,
xlab = NULL,	results.subtitle = TRUE,
ylab = NULL,	<pre>point.args = list(color = "black", size = 3, shape = 16),</pre>
title = NULL,	centrality.plotting = TRUE,
<pre>subtitle = NULL,</pre>	centrality.type = type,
caption = NULL,	<pre>centrality.line.args = <u>list(color = "blue", linewidth = 1, linetype = "dashed")</u></pre>
<pre>type = "parametric",</pre>	ggplot.component = NULL,
test.value = 0,	<pre>ggtheme = ggstatsplot::theme_ggstatsplot(),</pre>
bf.prior = 0.707,	
bf.message = TRUE,	
effsize.type = "g",	

Load the starwars dataset.

1.1 Plot the distribution of height height across gender (feminine, masculine) Star Wars characters, considering only those characters that have a weight greater than 50?

1.2 Plot the distribution of mass among Star Wars characters who appear in 'The Empire Strikes Back' film and have brown hair, and is the average mass significantly different from 50 in this subset of characters?

1.3 Plot the distribution of height among Star Wars characters for each eye color, and is the average height significantly different from 180 cm for each eye color group?

Hypothesis about correlation

Two numeric variables - ggscatterstats
 Multiple numeric variables - ggcorrmat

5. ggscatterstats-Two numeric variables

- It is used for data exploration.
- It used to check linear association between two continuous variables.
- It used to check distribution of two continuous variables.
- Highly Customizable.
- Publication-Ready scatterplot with all statistical details included in the plot itself.

5. ggscatterstats-Two numeric variables

5. ggscatterstats-Example

Question: What is the relationship between Sepal Width and Petal Length in the iris dataset, and are there any specific species of iris where the Sepal Length is greater than 7.6?

>	iris				
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa

ggscatterstats(

 $t_{\text{Student}}(148) = -5.77, p = 4.51e-08, \hat{r}_{\text{Pearson}} = -0.43, \text{Cl}_{95\%}$ [-0.55, -0.29], $n_{\text{pairs}} = 150$

 $log_e(BF_{01}) = -12.65$, $\hat{\rho}_{Pearson}^{posterior} = -0.42$, $Cl_{95\%}^{HDI}$ [-0.55, -0.29], $r_{beta}^{JZS} = 1.41$

3. ggscatterstats-Arguments

ggscatterstats(
data.	point.width.jitter = 0,
Χ.	point.height.jitter = 0,
N .	point.label.args = <u>list</u> (size = <mark>3</mark> , max.overlaps = <mark>1e+06</mark>),
Y/	<pre>smooth.line.args = list(linewidth = 1.5, color = "blue", method = "lm", formula</pre>
cype = parametric,	x),
cont.level = 0.95,	<pre>xsidehistogram.args = list(fill = "#009E73", color = "black", na.rm = TRUE),</pre>
bf.prior = 0.707,	<pre>ysidehistogram.args = list(fill = "#D55E00", color = "black", na.rm = TRUE),</pre>
bf.message = TRUE,	xlab = NULL.
tr = 0.2,	vlab = NULL
digits = $2L$,	title = NIII L
results.subtitle = TRUE,	subtitle = NUL
label.var = NULL.	cantion - NULL
label expression - NULL	satheme - sastateplatutheme sastateplat()
cabel.expression - NOLL,	ggtheme = ggstatsptot:: <u>theme_ggstatsptot</u> (),
marginal = IRUE,	ggplot.component = NULL,
point.args = <u>list</u> (size = <mark>3</mark> , alpha = 0.4, stroke = 0),	

https://indrajeetpatil.github.io/ggstatsplot/reference/ggscatterstats.html

6. ggcorrmat Multiple Numeric Variables

- It is used for data exploration.
- Can be used to get a correlation coefficient matrix or the associated p-value matrix
- Quickly explore correlation between (all) numeric variables in the dataset.
- Highly Customizable.
- Publication-Ready correlation matrix with all statistical details included in the plot itself.

X = non-significant at p < 0.05 (Adjustment: Holm)

6. ggcorrmat Multiple Numeric Variables

<pre>title <chr> 1 Shawshank Redemption, The 2 Lord of the Rings: The Return of the King, The 3 Lord of the Rings: The Fellowship of the Ring, The 4 Lord of the Rings: The Two Towers, The 5 Pulp Fiction 6 Schindler's List 7 Star Wars 8 Star Wars: Episode V - The Empire Strikes Back 9 C'era una volta il West</chr></pre>	year <int> 1994 2003 2001 2002 1994 1993 1977 1980 1968</int>	length <int> 142 251 208 223 168 195 125 129 158</int>	budget <dbl> 25 94 93 94 8 25 11 18 5</dbl>	rating <dbl> 9.1 9 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8</dbl>	votes <int> 149494 103631 157608 114797 132745 97667 134640 103706 17241</int>	mpaa <fct> R PG-13 PG-13 PG-13 R R PG PG PG-13</fct>	genre <fct> Drama Action Action Action Drama Action Action Drama</fct>
9 C'era una volta il West	<u>1</u> 968	158	5	8.7	<u>17</u> 241	PG-13	Drama
O Cidade de Deus	2002	135	3.3	8.7	25964	R	Drama

X = non-significant at p < 0.05 (Adjustment: Holm)

45

PARIS LODRON UNIVERSITÄT

SALZBURG

6. ggcorrmat-Multiple Numeric Variables

ggcorrmat(data = movies_long, matrix.type = "lower")

ggcorrmat(
 data = movies_long,
 matrix.type = "full",
 type = "np"
)

X = non-significant at p < 0.05 (Adjustment: Holm)

6. ggcorrmat-Example

Question: show the the correlation matrix between life expectancy and GDP per capita for all countries in the gapminder dataset for the year 2007?

> gapminder::gapminder

A tibble: 1,704 × 6

	country	continent	year	lifeExp	рор	gdpPercap
	<fct></fct>	<fct></fct>	<int></int>	<db1></db1>	<int></int>	<db1></db1>
1	Afghanistan	Asia	<u>1</u> 952	28.8	8 <u>425</u> 333	779.
2	Afghanistan	Asia	<u>1</u> 957	30.3	9 <u>240</u> 934	821.
3	Afghanistan	Asia	<u>1</u> 962	32.0	10 <u>267</u> 083	853.
4	Afghanistan	Asia	<u>1</u> 967	34.0	11 <u>537</u> 966	836.
5	Afghanistan	Asia	<u>1</u> 972	36.1	13 <u>079</u> 460	740.

select data only from the year 2007

gapminder_2007 <- dplyr::filter(gapminder::gapminder, year == 2007)</pre>

producing the correlation matrix

```
ggcorrmat(
```

```
data = gapminder_2007, ## data from which variable is to be taken
matrix.type = "full",
cor.vars = c(lifeExp,gdpPercap) ## specifying correlation matrix variable;
```


3. ggcorrmat-Arguments

ggcorrmat(

```
data,
cor.vars = NULL,
cor.vars.names = NULL,
matrix.type = "upper",
type = "parametric",
tr = 0.2,
partial = FALSE,
digits = 2L,
sig.level = 0.05,
conf.level = 0.95,
bf.prior = 0.707,
p.adjust.method = "holm",
pch = "cross",
ggcorrplot.args = <u>list(method</u> = "square", outline.color = "black", pch.cex = 14
package = "RColorBrewer",
palette = "Dark2",
colors = c("#E69F00", "white", "#009E73"),
ggtheme = ggstatsplot::theme_ggstatsplot(),
qqplot.component = NULL,
title = NULL,
subtitle = NULL,
caption = NULL,
```

https://indrajeetpatil.github.io/ggstatsplot/reference/ggcorrmat.html

Load the starwars dataset.

2.1 Plot to determine if the average weight for male human species has any relationship to their height?

2.2 Plot the correlation matrix of numerical variables (height, mass, birth_year) for characters in the starwars separately for type argument "parametric" and "robust"

Hypothesis of composition of categorical variables

7. ggpiestats-association between categorical variables

- It is used for data exploration.
- Provide pie charts to summarize the statistical relationship(s) among one or more categorical variables.
- Can be used to check goodness of fit.
- To see if the frequency distribution of two categorical variables are independent of each other using the contingency table analysis
- To check if the proportion of observations at each level of a categorical variable is equal
- Highly Customizable.
- Publication-Ready pie charts.

 $\chi^2_{\text{dof}}(3) = 467.81, p = 4.52e-101, \widehat{C}_{\text{Pearson}} = 0.42, \text{Cl}_{95\%}[0.39, 0.45], n_{\text{obs}} = 2,201$

 $log_e(BF_{01}) = -226.22, a_{Gunel-Dickey} = 1.00$

7. ggpiestats-Goodness of Fit

> Titanic full # A tibble: 2,201 × 5 id Class Sex Age Survived <db1> <fct> <fct> <fct> <fct> <fct> 1 3rd Male Child No 1 2 2 3rd Male Child No 3 3 3rd Male Child No 4 3rd Male Child No 4 5 5 3rd Male Child No 6 3rd Male Child No 6 7 3rd Male Child No 8 3rd Male Child No 8 9 3rd Male Child No 9 Defaults return Changing the type of test $\checkmark "p" \rightarrow Parametric \rightarrow \mu_{mean}$ descriptives (frequency + %s) \checkmark "np" \rightarrow non - parametric $\rightarrow \mu_{median}$ inferential statistics \checkmark "r" \rightarrow robust $\rightarrow \mu_{trimmed}$ effect size + CIs ✓ "bf" → Bayesian →μ_{MAP} Goodness-of-fit tests Bayesian hypothesis-testing ggpiestats(data = Titanic_full. #data frame Bavesian estimation x = Survived, # different categories in the Survived title = "Passenger survival on the Titanic", Test by design caption = "Source: Titanic survival dataset", • Paired = FALSE \rightarrow Pearson's χ^2 legend.title = "Survived?". label = "both" # other values "percentage" • Paired = TRUE \rightarrow McNemar's χ^2 #(default). "counts"

Passenger survival on the Titanic

 $\chi^2_{\text{coff}}(1) = 275.71, p = 6.46\text{e}-62, \widehat{C}_{\text{Pearson}} = 0.33, \text{Cl}_{95\%}[0.30, 0.37], n_{\text{obs}} = 2,201$

7. ggpiestats-association between categorical variables

> Titanic_full

# A	tibb	le: 2,2	201×5)	
	id	Class	Sex	Age	Survived
	<db1></db1>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>
1	1	3rd	Male	Child	No
2	2	3rd	Male	Child	No
3	3	3rd	Male	Child	No
4	4	3rd	Male	Child	No
5	5	3rd	Male	Child	No
6	6	3rd	Male	Child	No
7	7	3rd	Male	Child	No
8	8	3rd	Male	Child	No
9	9	3rd	Male	Child	No


```
label = "both" # other values "percentage"
#(default), "counts"
```

$\chi^2_{\text{Pearson}}(1) = 456.87, p = 2.30e-101, \widehat{V}_{\text{Cramer}} = 0.46, \text{Cl}_{95\%}$ [0.41, 0.50], $n_{\text{obs}} = 2,201$

log_e(BF₀₁) = -213.98, $\hat{V}_{Cramer}^{posterior}$ = 0.45, Cl^{ETI}_{95%} [0.41, 0.49], a_{Gunel-Dickey} = 1.00

7. ggpiestats-Example

Question: Display a pie chart with the both percentages and counts to show attributes (Sepal or Petal) with a length of 5 or more among the different species in the Iris dataset?

- 1	· IT IS_TONG											
# A	≠ A tibble: 600 × 6											
	ic	d	Species	condition	attribute	measure	value					
	<int< th=""><th>></th><th><fct></fct></th><th><fct></fct></th><th><fct></fct></th><th><fct></fct></th><th><db1></db1></th></int<>	>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<db1></db1>					
1	1	L	setosa	Sepal.Length	Sepal	Length	5.1					
2	2	2	setosa	Sepal.Length	Sepal	Length	4.9					
3	3	3	setosa	Sepal.Length	Sepal	Length	4.7					
4	4	4	setosa	Sepal.Length	Sepal	Length	4.6					
5	5	5	setosa	Sepal.Length	Sepal	Length	5					
6	6	5	setosa	Sepal.Length	Sepal	Length	5.4					
7	7	7	setosa	Sepal.Length	Sepal	Length	4.6					

> iris long

iris_filter <- dplyr::filter(iris_long, measure == "Length" & value >= 5)

```
# Use ggpiestats to create the pie chart
ggpiestats(
   data = iris_filter, # data frame
   x = attribute , # variable for rows in the contingency table
   y = Species , # variable for columns in the contingency table
   label = "both" # display both counts and percentages
```


 $\log_{e}(\mathsf{BF}_{01}) = -22.41, \ \widehat{V}_{\mathsf{Cramer}}^{\mathsf{posterior}} = 0.47, \ \mathsf{CI}_{95\%}^{\mathsf{ETI}} \ [0.36, \ 0.57], \ a_{\mathsf{Gunel-Dickey}} = 1.00$

3. ggpiestats - Arguments

ggpiestats(

```
data,
х,
y = NULL,
counts = NULL,
type = "parametric",
paired = FALSE,
results.subtitle = TRUE,
label = "percentage",
label.args = list(direction = "both"),
label.repel = FALSE,
digits = 2L,
proportion.test = results.subtitle,
digits.perc = OL,
bf.message = TRUE,
ratio = NULL,
```

```
conf.level = 0.95,
sampling.plan = "indepMulti",
fixed.margin = "rows",
prior.concentration = 1,
title = NULL,
subtitle = NULL,
caption = NULL,
legend.title = NULL,
ggtheme = ggstatsplot::<u>theme_ggstatsplot()</u>,
package = "RColorBrewer",
palette = "Dark2",
ggplot.component = NULL,
```

https://indrajeetpatil.github.io/ggstatsplot/reference/ggpiestats.html

8. ggbarstats-association between categorical variables

- It is used for data exploration.
- Provide bar charts to summarize the statistical relationship(s) among one or more categorical variables.
- Can be used to check goodness of fit.
- To see if the frequency distribution of two categorical variables are independent of each other using the contingency table analysis
- To check if the proportion of observations at each level of a categorical variable is equal
- Highly Customizable.
- Publication-Ready bar charts.

$\chi^2_{\text{Pearson}}(1) = 456.87, p = 2.30e-101, \widehat{V}_{\text{Cramer}} = 0.46, \text{Cl}_{95\%}$ [0.41, 0.50], $n_{\text{obs}} = 2,201$

8. ggbarstats-association between categorical variables

v = Sex

- Paired = FALSE \rightarrow Pearson's χ^2
- Paired = TRUE \rightarrow McNemar's χ^2

8. ggbarstats-Example

Question: Display a bar chart with the both percentages and counts to show attributes of MPAA ratings among Drama and Comedy genres in the movie dataset?

```
ggbarstats(
   data = dplyr::filter(
      movies_long,
      genre %in% c("Drama","Comedy")),
   x = mpaa,
   y = genre,
   label = "both"
)
```


 $log_{e}(BF_{01}) = -20.44, \ \widehat{V}_{Cramer}^{posterior} = 0.27, \ CI_{95\%}^{ETI} \ [0.19, \ 0.34], \ a_{Gunel-Dickey} = 1.00$

3. ggbarstats-Arguments


```
qqbarstats(
 data,
                                                  sampling.plan = "indepMulti",
 х,
 у,
                                                  fixed.margin = "rows",
 counts = NULL,
                                                  prior.concentration = 1,
 type = "parametric",
                                                  title = NULL.
 paired = FALSE,
                                                  subtitle = NULL,
 results.subtitle = TRUE,
                                                  caption = NULL,
 label = "percentage",
                                                  legend.title = NULL,
 label.args = list(alpha = 1, fill = "white"),
                                                  xlab = NULL,
 sample.size.label.args = list(size = 4),
                                                  ylab = NULL,
 digits = 2L,
                                                  qqtheme = qqstatsplot::theme_qqstatsplot(),
 proportion.test = results.subtitle,
                                                  package = "RColorBrewer",
 digits.perc = OL,
                                                  palette = "Dark2",
 bf.message = TRUE,
 ratio = NULL,
                                                  ggplot.component = NULL,
 conf.level = 0.95,
```

https://indrajeetpatil.github.io/ggstatsplot/reference/ggbarstats.html

Load the starwars dataset.

- 3.1 Display a pie chart with the percentage distribution of genders among the characters in the Star Wars dataset?
- 3.2 Plot the pie-chart for character's gender percentage associated with, eye colour (blue, red, yellow and brown)
- 3.3 Display a bar chart to identify male species(Human, Wookiee, Zabrak) who has height greater than 70 was independent of or associated with hair_colour in (blond, brown and black)

Hypothesis about regression coefficients

ggcoefstats: Any regression model object

9. ggcoefstats

- It is used to generate **dot-and-whisker** plots for regression models saved in a tidy data frame.
- The tidy data frames are prepared using **parameters::model_parameters**.
- if available, the model summary indices are also extracted from **performance::model_performance**
- A dot representing the **estimate** and their **confidence intervals** (95% is the default).
- Estimate can be either effect size or regression coefficient.

9. ggcoefstats

)

<pre>title <chr> 1 Shawshank Redemption, The 2 Lord of the Rings: The Return of the King 3 Lord of the Rings: The Fellowship of the 1 4 Lord of the Rings: The Two Towers, The 5 Pulp Fiction 6 Schindler's List 7 Star Wars 8 Star Wars: Episode V - The Empire Strikes 9 C'era una volta il West 0 Cidade de Deus</chr></pre>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AA rating
Defaults return ✓ inferential statistics ✓ estimate + CIs ✓ model summary (AIC and BIC) 	<pre>imode] iod <- stats::lm(formula = rating ~ mpaa, data = movies_long gcoefstats(x = mod, #model title = "IMDE rating by MPAA rating" </pre>	$\hat{\beta} = 5.81, t(1576) = 65.89, p = 0.00$ 2 4 6 estimate

9. ggcoefstats-Supported models

ion"

[1]	"aareg"	"afex_aov"	[77]	"garch"	"gbm"	[157] "model_fit"	"multinom"
[3]	"AKP"	"Anova.mlm"	[79]	"gee"	"geeglm"	[159] "mvord"	"negbinirr"
[5]	"anova.rms"	"aov"	[81]	"glht"	"glimML"	[161] "neabinmfx"	"nestedlogit
[7]	"aovlist"	"Arima"	[83]	"glm"	"Glm"	[163] "ols"	"onesamnh"
[9]	"averaging"	"bamlss"	[85]	"glmm"	"glmmadmb"	[165] "opm"	"namm"
11]	"bamlss.frame"	"bavesOR"	[87]	"glmmPQL"	"glmmTMB"	[167] "pbylogla"	pgiiiii "pbylolm"
13]	"bayesx"	"BBmm"	[89]	"glmrob"	"glmRob"		phy co cili
15]	"BBreg"	"bcplm"	[91]	"glmx"	"gls"	[109] "ptm"	"PMUMK"
17]	"betamfx"	"betaor"	[93]	"gmnl"	"hglm"	[171] "poissonirr"	"poissonmtx'
191	"betareo"	"BEBayesFacto	[95]	"HLfit"	"htest"	[173] "polr"	"probitmfx"
211	"bfsl"	"BGGM"	[97]	"nurdle"	"iv_robust"	[175] "psm"	"Rchoice"
231	"hife"	"hifeAPEs"	[99]	"ivFixed"	"IVPPODIT"	[177] "ridgelm"	"riskRegress
251	"bigalm"	"bialm"	[101]	"ivreg"	"Lavaan"	[179] "rjags"	"rlm"
271	"blavaan"	"blrm"	[105]	LIII "] mo "	"I monMod"	[181] "rlmerMod"	"RM"
291	"bracl"	"bralm"	[107]	"lmerModimerTest"	"lmodel 2"	[183] "rma"	"rma.uni"
311	"brmsfit"	"brmultinom"	[100]	"lmcoh"	"lmRob"	[185] "robmixalm"	"rohtah"
331	"bteram"	"censRea"	[111]	"logistf"	"logitmfx"	[187] "ra"	"ras"
351	"cgam"	"cnamm"	[113]	"logitor"	"logitr"	[107] "pase"	"nyan"
371	"colm"	"clm"	[115]	"LORgee"	"lam"	[107] 1455	1 Val
391	"clm2"	"clmm"	[117]	"lqmm"	"lrm"	[191] "Sarum"	"scam"
411	"clmm2"	"clogit"	[119]	"manova"	"MANOVA"	[193] "selection"	"sem"
431	"coeftest"	"complmrob"	[121]	"marginaleffects"	"marginaleffects.summary"	[195] "SemiParBIV"	"semLm"
451	"confusionMatrix"	"coxme"	[123]	"margins"	"maxLik"	[197] "semLme"	"serp"
471	"coxph"	"coxnh nenal"	[125]	"mblogit"	"mclogit"	[199] "slm"	"speedglm"
491	"coxp"	"cnglm"	[127]	"mcmc"	"mcmc.list"	[201] "speedlm"	"stanfit"
511	"coalmm"	"crch"	[129]	"MCMCglmm"	"mcp1"	[203] "stanmvreg"	"stanreg"
531	"cpa"	"cras"	[131]	"mcp12"	"mcp2"	[205] "summary.lm"	"survfit"
551	"cpp"	"den effect"	[133]	"med1way"	"mediate"	[207] "survreg"	"svv valm"
571	"DirichletReaModel"	"draws"	[135]	"merMod"	"merModList"	[209] "syvchisa"	"svvalm"
591	"drc"	"eqlm"	[137]	"meta_bma"	"meta_fixed"	[211] "syvolp"	"t1way"
611	"elm"	"eni.2hv2"	[139]	"meta_random"	"metaplus"	[213] "tobit"	"toimcibt"
631	"epam"	"fealm"	[141]	"mhurdle"	"mipo"	[215] [001]	"vcom"
651	"fois"	"folm"	[143]	"mira"	"mixed"	[215] LIONCINEY	vyalli
671	"fitdistr"	"fixest"	[145]	"MIXMOO"	"mixor"	[21/] "VgLm"	"wbgee"
691	"flac"	"flexsurvrea"	[147]	"mlo2"	"mle"	[219] "wblm"	"wbm"
711	"flic"	"nam"	[149]	"mlogit"	"mmologit"	[221] "wmcpAKP"	"yuen"
731	"Gam"	"damlee"	[151]	"mmlogit"	"mmom"	[223] "yuend"	"zcpglm"
101		gamess	[100]	mmedgite	mult m	[225] "zeroinfl"	"zerotrunc"

3. ggcoefstats-Arguments


```
ggcoefstats(
```

```
х,
statistic = NULL,
conf.int = TRUE,
conf.level = 0.95,
digits = 2L,
exclude.intercept = FALSE,
effectsize.type = "eta",
meta.analytic.effect = FALSE,
meta.type = "parametric",
bf.message = TRUE,
sort = "none",
xlab = NULL,
ylab = NULL,
title = NULL,
subtitle = NULL,
caption = NULL,
only.significant = FALSE,
```

```
point.args = list(size = 3, color = "blue", na.rm = TRUE),
errorbar.args = list(height = 0, na.rm = TRUE),
vline = TRUE,
vline.args = list(linewidth = 1, linetype = "dashed"),
stats.labels = TRUE,
stats.label.color = NULL,
stats.label.args = list(size = 3, direction = "y", min.segment.length = 0, na.r
TRUE),
package = "RColorBrewer",
palette = "Dark2",
ggtheme = ggstatsplot::theme_ggstatsplot(),
```

https://indrajeetpatil.github.io/ggstatsplot/reference/ggcoefstats.html

grouped_variants of all functions

Running the same function for all levels of a single grouping variable

> mtcars

- grouped_ggbetweenstats
- grouped_withinstats
- grouped_gghistostats
- grouped_ggdotplotstats
- grouped_ggscatterstats
- grouped_ggcorrmatt
- grouped_ggpiestats
- grouped_ggbarstats

grouped_ggpiestats(
 data = mtcars,
 x = cyl,
 grouping.var = am
)

Load the starwars dataset.

4.1 Display a pie chart with the percentage distribution of genders among the characters in the Star Wars dataset, group by their eye colour in ("blue','red','yellow','brown").

4.2 Plot the distribution of height across gender (feminine, masculine) of Star Wars characters, which grouping by their skin colour (fair, gold)

Customizability of ggstatsplot

"What if I don't like the default plots?"

Changing Themes and Color Palettes

The default palette is **colorblind-friendly**.

Install the ggthemes package

install.packages('ggthemes')

Further Modifications Using ggplot2

You can modify ggstatsplot plots further using ggplot2 functions.

2.

(n = 19)

am

₹

(n = 13)

Show Only Plots

ggstatsplot can be used to get only plots.

ggbetweenstats(

data = iris,

x = Species,

y = Sepal.Length,

turn off centrality measure

centrality.plotting = FALSE,

turn off statistical analysis

results.subtitle = FALSE,

turn off Bayesian message

bf.message = FALSE,

turn off pairwise comparisons

pairwise.display = "none"

Get Only Expression

list(Sex = c(1, 2, 1, 2), Survived = c(1, 1, 2, 2), counts = c(344, 367, 126, 1364)

ggstatsplot can be used to get only expressions.

results ← ggpiestats(data = Titanic_full, x = Survived,	4		21.2%
y = Sex,			
output = "subtitle"	0	73.2%	
)	vived ∀e	10.270	
ggiraphExtra::ggSpine(Sun		
data = Titanic_full,			78.8%
aes(x = Sex, fill = Survived),			
addlabel = TRUE,			
interactive = FALSE	2	26.8%	
) +	_		
labs(subtitle = results)			
		Female	Male

Get Output as a Table

statsExpressions, statistical processing backend for ggstatsplot, can provide dataframes.

mu 🍦	statistic 🗘	df.error 🍦	p.value 🍦	method $ arrow$	alternative 🗘	effectsize 🍦	estimate 🍦	conf.level 🗘	conf.low 🌐	conf.high
3	1.256009	31	0.2184965	One Sample t-test	two.sided	Hedges' g	0.2166103	0.95	-0.1273401	0.5571645

Exercise 5

Using the starwars dataset,

5.1: Construct a histogram for the 'height' variable. Ensure that there are no statistical annotations included in the plot.

5.2: Generate a scatterplot for the variables 'Height' and 'Mass'. The plot should not contain any subtitle annotations.

- Identify if there are any outliers present in the scatterplot. If outliers are found, remove them and replot the data.
- Apply the Wall Street Journal Theme (theme_wsj) to the scatterplot.

Misconceptions

 \mathbf{X} an alternative to learning ggplot2

🗹 (the more you know ggplot2, the better you can modify the defaults to your liking)

🗙 meant to be used in talks/presentations

(defaults too complicated for effectively communicating results in time-constrained presentation settings, e.g. conference talks)

- X only relevant when used in publications
- ont necessary; can also be useful *only* during exploratory phase
- \mathbf{X} the only game in town
- (excellent GUI open-source softwares: JASP and jamovi)
Limitations

Limited no. of plots and statistical tests available. This will always be the case. 🤷

Expects a non-trivial level of statistical proficiency (but plots without statistics can still be useful).

Faceting does not work (since there are no corresponding geom_ s). For the same reason, plots are not {gganimate} -friendly.

Sources

Git Repository: <u>https://indrajeetpatil.github.io/ggstatsplot/</u>

Source Presentation: <u>https://indrajeetpatil.github.io/ggstatsplot_slides/ggstatsplot_presentation.html</u>

Questions

Thank You