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Percy Weasley and linear regression

Last time: Univariate and multivariate linear regression
Formulation of the model
Estimating the model coefficients (by hand)
Using linear models in the {tidymodels} framework

Now:
More on multivariate linear regression
Interpretation of the model
Checking model quality and underlying assumptions
Logistic classification



More on Linear Regression Logistic Regression/Classification Spearman Rank Correlation

Section 1

More on Linear Regression
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Reminder: Multivariate linear regression
Multivariate linear regression model:
𝑌 = 𝑎0 + 𝑎1𝑋1 + ⋯ + 𝑎𝑚𝑋𝑚 + 𝜖
Objective: Given observations
(𝑥11, 𝑥12, … , 𝑥1𝑚, 𝑦1), (𝑥21, 𝑥22, … , 𝑥2𝑚, 𝑦2), …
(𝑥𝑛1, 𝑥𝑛2, … , 𝑥𝑛𝑚, 𝑦𝑛) estimate the coefficients
𝑎0, 𝑎1, … , 𝑎𝑚.

We can formulate the loss function as (why?)

𝐹( ̂𝑎) ∶= (𝒳 ̂𝑎 − 𝑦)⊤(𝒳 ̂𝑎 − 𝑦)
where

𝒳 ∶=
⎛⎜⎜⎜
⎝

1 𝑥11 … 𝑥1𝑚
1 𝑥21 … 𝑥2𝑚
⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 … 𝑥𝑛𝑚

⎞⎟⎟⎟
⎠

̂𝑎 ∶=
⎛⎜⎜⎜
⎝

̂𝑎0
̂𝑎1
⋮
̂𝑎𝑚

⎞⎟⎟⎟
⎠

𝑦 ∶=
⎛⎜⎜⎜
⎝

𝑦1
𝑦2
⋮

𝑦𝑛

⎞⎟⎟⎟
⎠
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Reminder: Multivariate linear regression

Notice that 𝒳 collects the observed predictors, 𝑦 collects the
observed outcomes and ̂𝑎 collects the estimated model
coefficients. We assume 𝒳⊤𝒳 ∈ ℝ𝑚+1×𝑚+1 to be invertible.

The solution to the minimization problem is
̂𝑎 = (𝒳⊤𝒳)−1 𝒳⊤𝑦.

I.e., ̂𝑎 is our estimator for the coefficients vector 𝑎.

We derived this last time via calculus (Ana 3).

Let’s have a closer look and derive the solution intuitively only
using Linear Algebra.
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Reminder: Multivariate linear regression

Remember that the matrix 𝒳 ∈ ℝ𝑛×(𝑚+1) corresponds to a
linear transformation from ℝ𝑚+1 to ℝ𝑛.

The set im(𝒳) = {𝒳𝑧 ∶ 𝑧 ∈ ℝ𝑛} is a vector space called
image/range of 𝒳.

Obviously im(𝒳) ⊆ ℝ𝑛.

Suppose that 𝑦 ∈ ℝ𝑛. What is the best approximation of 𝑦 in
im(𝒳)?
Obviously it is the orthogonal projection of 𝑦 onto the
subspace im(𝒳).
Orthogonality implies that for the right 𝑎 we have
< 𝒳𝑎, 𝑦 − 𝒳𝑎 >= 0.
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Reminder: Multivariate linear regression

In other words: < 𝑎, 𝒳⊤(𝑦 − 𝒳𝑎) >= 0
One sufficient condition for the inner product to be 0 ist
𝒳⊤𝑦 − 𝒳⊤𝒳𝑎 = 0, which boils down to

𝒳⊤𝑦 = 𝒳⊤𝒳𝑎.

Multiplying with the inverse of 𝒳⊤𝒳 finally yields

̂𝑎 = (𝒳⊤𝒳)−1 𝒳⊤𝑦.

and we are done.
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Reminder: Multivariate linear regression

Knowing ̂𝑎 = (𝒳⊤𝒳)−1 𝒳⊤𝑦 we have the following:

The fitted values (predictions) are ̂𝑦 ∶= 𝒳 ̂𝑎.

Plugging in the solution yields: ̂𝑦 = 𝒳 (𝒳⊤𝒳)−1 𝒳⊤𝑦.

Define 𝐻 ∶= 𝒳 (𝒳⊤𝒳)−1 𝒳⊤, then ̂𝑦 = 𝐻𝑦.

𝐻 is called hat matrix, because it puts a hat onto 𝑦.

It holds that ̂𝑦 = 𝒳 ̂𝑎 = 𝐻𝑦.
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Hat matrix as a projection matrix

The hat matrix has a number of important properties:

We have 𝐻 ∈ ℝ𝑛×𝑛, i.e., 𝐻 maps ℝ𝑛 to itself.

𝐻 is symmetric, i.e. 𝐻⊤ = 𝐻.

𝐻 is idempotent, i.e. 𝐻2 = 𝐻.

Thus, 𝐻 is a projection matrix, projecting any point 𝑝 ∈ ℝ𝑛

to the closest point 𝑞 ∈ im(𝒳).
The residuals 𝑟 ∶= 𝑦 − ̂𝑦 can be calculated by
𝑟 = (𝕀𝑛×𝑛 − 𝐻)𝑦, where 𝕀𝑛×𝑛 is the identity matrix and it
holds further 𝑟⊥𝐻𝑦.

tr(𝐻) = rank(𝒳).
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Exercise

Argue why the hat matrix 𝐻 is symmetric.

Show that 𝐻 is idempotent.

Prove that 1 is an eigenvalue of 𝐻 (hint: use the fact that for
any eigenvalue 𝜆 of any matrix 𝐴 the value 𝜆𝑛 must be an
eigenvalue of 𝐴𝑛).
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Leverage

For a training data point 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚) the diagonal
entry 𝐻𝑖𝑖 of the hat matrix is called leverage

The prediction ̂𝑦𝑖 is given by ̂𝑦𝑖 = 𝐻𝑖,∶ ⋅ 𝑦, where 𝐻𝑖,∶ is the
𝑖-th row of 𝐻.

So the influence of 𝑦𝑖 on its own prediction is given by the
entry 𝐻𝑖𝑖.

Hence, the leverage is a measure of self-influence.

Points with high leverage lie in low-density regions of the
input space and might be outliers.
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Interpreting the coefficients

The model is 𝑌 = 𝑎0 + 𝑎1𝑋1 + ⋯ + 𝑎𝑛𝑋𝑛 + 𝜖.
The coefficient 𝑎𝑖 for 𝑖 > 0 can be interpreted as follows: If
𝑋𝑖 increases by one unit (while the other predictors remain
unchanged), then 𝑌 increases by 𝑎𝑖 units.

In the previous example (last lecture): If the weight of the car
increases by 1000 lbs and all other variables stay the same,
then the car’s efficiency will be about 4.3 miles per US gallon
less than before.
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Interpreting the intercept

The 𝑎0 coefficient, called intercept, sometimes has no intrinsic
interpretation.

Let’s say the linear model for the score in an exam is given by
score = 65.4 + 2.67 ∗ hours of study, then the intercept has a
meaning, because hours of study == 0 can occur in the
real world.

But in the mtcars example, cars of weight zero and
horsepower zero can’t exist and the intercept has no intrinsic
interpretation.



More on Linear Regression Logistic Regression/Classification Spearman Rank Correlation

Interpreting the p-values

Let’s add the length of the name of the lead engineer of every
car model to the dataset.

What will happen?
The model will assign a coefficient to this variable
But (by using common sense) it is highly unlikely that the
name of the lead engineer somehow influences the fuel
efficiency of the car

Can we quantify somehow, that we are sure that a coefficient
is not 0?



More on Linear Regression Logistic Regression/Classification Spearman Rank Correlation

A first gimplse on p-values
The p-value is the result of a hypothesis test.

For the coefficient 𝑎𝑖 define the null hypothesis as
𝐻0 ∶ 𝑎𝑖 = 0.

The p-value is now the probability that 𝐻0 holds, given the
available data

If the p-value is lower than a fixed significance level 𝛼, then
we reject the null hypothesis and assume that the variable 𝑋𝑖
has a significant influence on the outcome 𝑌 .

In other words: On this significance level we are sure that the
coefficient is not 0.

The significance level 𝛼 has to be chosen by us by the amount
of risk we are willing to take of wrongly accepting the null
hypothesis.

Standard choices are 𝛼 = 0.05 and 𝛼 = 0.01.
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Residual diagnostics

The 𝑅2 value already gives us a first indicator on the model’s
performance.

A large 𝑅2 does not necessarily imply that the model
describes the data well - why?

But often a graphical inspection provides more insights.

Base R gives us several residual diagnostics plots.



More on Linear Regression Logistic Regression/Classification Spearman Rank Correlation

Residual diagnostics (model inspection)

plot(fitted_model, which = 1)
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This plot depicts the
residual (𝑦-axis) for each
data point as a function of
the predictions (𝑥-axis).
For a well-fitted model, the
points should be scattered
symmetrically around the
horizontal axis
(homoscedasticity).
In particular: The smooth
red line (moving average)
should follow the dashed
black line.
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Residual diagnostics

plot(fitted_model, which = 2)
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Plot number 2 shows the
observed quantiles of the
residuals against the
theoretical quantiles of the
normal distribution.
For normally distributed
error 𝜖 all points should lie
more or less on the dotted
line.
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Residual diagnostics

plot(fitted_model, which = 3)
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The next plot is very similar
to the first one (residuals
vs. fitted).
But sometimes it is easier to
verify homoscedasticity in
this plot.
The points should be spread
out evenly across the plot.
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Residual diagnostics

plot(fitted_model, which = 4)
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Cook’s distance measures
the effect of deleting a given
observation on the model’s
coefficients.
Data points with a high
Cook’s distance are
influential points and merit
closer examination.
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Residual diagnostics

plot(fitted_model, which = 5)
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This plot combines the
leverage, normalized
residuals and Cook’s
distance.
All points should be
scattered evenly around the
horizontal axis.
Points with high leverage
and high residuals might be
considered as outliers.
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Exercises

Homoscedasticity means that the variance of the residuals
stays constant, in particular that it does not depend on the
fitted value. For the mtcars example (mpg ~ hp + wt),
what would heteroscedasticity mean?

Come up with an example where a data point has high
leverage, but a low residual.

Come up with an example where a data point has low
leverage, but a high residual.
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Exercises

Which of the following QQ-Plots depicts a “heavy tailed”
distribution and which shows a “light tailed” distribution compared
to the normal distribution?
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Multicollinearity

Consider the following training dataset:
n <- 100
x1 <- runif(n, -10, 10)
x2 <- 2 * x1 + runif(n, -0.1, 0.1)
y <- 3 * x1 + x2 + runif(n, -1, 1)
A <- data.frame(x1 = x1, x2 = x2, y = y)
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Multicollinearity

Train a linear model for the first time:

Call:
lm(formula = y ~ x1 + x2, data = A)

Coefficients:
(Intercept) x1 x2

-0.06569 0.75927 2.11880
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Multicollinearity

Re-generate the data and train again:

Call:
lm(formula = y ~ x1 + x2, data = A)

Coefficients:
(Intercept) x1 x2

0.05156 3.88950 0.55944

The estimates for the coefficients vary a lot and are far away
from the true parameters 𝑎0 = 0, 𝑎1 = 3, 𝑎2 = 1.

What’s going on?
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Multicollinearity

The problem here is that 𝑋1 and 𝑋2 are highly correlated.

So decreasing the coefficient for 𝑋1 while suitably increasing
the coefficient for 𝑋2 at the same time will not change the
model much.

This phenomenon is called multicollinearity and results in
numerical instability.

For pairs of highly correlated variables only one variable
should be included in the model.
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Variance inflation factor (VIF)

To measure the impact of multicollinearity, one may calculate
the variance inflation factor (VIF)

Let 𝑌 = 𝑎0 + 𝑎1𝑋1 + ⋯ + 𝑎𝑚𝑋𝑚 + 𝜖 be the assumed model.

For each 𝑖 ∈ {1, … , 𝑚} estimate the leave-out-i linear model
𝑋𝑖 = 𝑏0 + 𝑏1𝑋1 + ⋯ + 𝑏𝑖−1𝑋𝑖−1 + 𝑏𝑖+1𝑋𝑖+1 + ⋯ + 𝑏𝑚𝑋𝑚.

Then calculate the coefficient of determination 𝑅2
𝑖 for the

model 𝑖 and set VIF𝑖 ∶= 1
1−𝑅2

𝑖
.

Variables with a high VIF (common: VIF > 5) are often just
removed from the model to stabilize training.
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Exercises

Justify the naming of “Variance Inflation Factor”. Which
variance is meant? What is inflated here?

What is the influence of the VIF on the p-value of the
respective coefficient?
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Section 2

Logistic Regression/Classification
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Logistic Regression/classification

Linear regression is for continuous outcomes.

Suppose we have data with binary 𝑦𝑖 (=outcome) values, for
example coming from a success or failure (depending on some
conditions).

Treating the binary outcome as a continuous variable with
values 0 and 1 does not make much sense cause the model
might return values outside the range, e.g. negative values.

One option: Enforce the model output to be in [0, 1] by
applying the logistic function 𝑙(𝑥) ∶= 1

1+exp(−𝑥) to the output
of the linear regression.

Using the logistic function will preserve the interpretability of
the model coefficients, as we will see later.
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Logistic classification

Statistical interpretation: In case the explanatory variables
𝑋1, … , 𝑋𝑚 have the values 𝑥1, … , 𝑥𝑚, then the probability
that 𝑌 = 1 is given by 𝑙(𝑥1, … , 𝑥𝑚).
Mathematically speaking:

𝑃(𝑌 = 1|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑚 = 𝑥𝑚) = 𝑙(𝑥1, … , 𝑥𝑚).

So in particular

𝑃(𝑌 = 0| 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑚 = 𝑥𝑚) = 1−𝑙(𝑥1, … , 𝑥𝑚).
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Logistic classification

Given a sample
(𝑥11, 𝑥12, … , 𝑥1𝑚, 𝑦1), (𝑥21, 𝑥22, … , 𝑥2𝑚, 𝑦2), …
(𝑥𝑛1, 𝑥𝑛2, … , 𝑥𝑛𝑚, 𝑦𝑛) , one can (as before) minimize the
empirical loss of the model to estimate the coefficients.

Problem: This time there is no analytical, closed-form
solution.

Standard approach is to maximize the likelihood (instead of
minimizing the loss) via adequate numerical procedures.

We’ll come back to that later (and in the exercises).
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Logit transformation

A straightforward transformation shows that for
𝑃(𝑌 = 1|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑚 = 𝑥𝑚) ∈ (0, 1) we have
that

𝑃(𝑌 = 1|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑚 = 𝑥𝑚) = 𝑙(𝑥1, … , 𝑥𝑚)

is equivalent to

ln (𝑃(𝑌 = 1|𝑋1 = 𝑥1, … , 𝑋𝑚 = 𝑥𝑚)
𝑃 (𝑌 = 0|𝑋1 = 𝑥1, … , 𝑋𝑚 = 𝑥𝑚)) = 𝑎0+𝑎1𝑥1+⋯+𝑎𝑚𝑥𝑚+𝜖

In other words: we end up at a linear model in 𝑥1, … , 𝑥𝑚
with the transformed outcome 𝑓(𝑧) ∶= ln ( 𝑧

1−𝑧).
The function 𝑓(𝑧) ∶= ln ( 𝑧

1−𝑧) is called logit (transformation)
and 𝑧

1−𝑧 the odds.
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Interpreting the coefficients

What are odds?
Consider throwing a fair dice.
The probability of obtaining a six is 𝑝 = 1

6 .
The odds of obtaining a six are 𝑜 = 𝑝

1−𝑝 = 1
5 (ratio of the

probability and the probability of the complement).
Odds are often used in gambling, e.g. “the odds are 1:5”.

Suppose that ̂𝑎1, … , ̂𝑎𝑛 are the fitted coefficients of the
logistic regression model.

An increase of 𝑋𝑖 of one unit will increase (additive) the
log-odds of the event by ̂𝑎𝑖, i.e. it will multiply the odds of
the event by exp( ̂𝑎𝑖).
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Exercises

You are building a logistic regression model to predict if a
customer will churn (cancel their service) based on their
monthly spending and contract length.

How would you interpret a coefficient of −0.2 for monthly
spending? Does a higher spending customer have a higher or
lower chance of churning?

We call it “Logistic Classification”, but so far our model
returns values/probabilities in [0, 1] and not a class label. How
can we make the model output the actual label?
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Section 3

Spearman Rank Correlation
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Spearman Rank Correlation

We already know the Pearson Correlation:
For two real-valued random variables 𝑋 and 𝑌 the Pearson
correlation 𝜌𝑃 (𝑋, 𝑌 ) is a number 𝜌𝑃 (𝑋, 𝑌 ) ∈ [0, 1].
It quantifies to what extent there is a linear relationship
between 𝑋 and 𝑌 .

Now we tackle so-called Spearman Rank Correlation
𝜌𝑆(𝑋, 𝑌 ):

Also 𝜌𝑆(𝑋, 𝑌 ) ∈ [0, 1]
But it quantifies whether there is a monotonic relationship
(sometimes called concordance) between 𝑋 and 𝑌 .
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Ranks

Given a vector 𝑣 the function rank(𝑣) returns the rank of each
element:
rank(c(3, 1, 4, 15, 13))

[1] 2 1 3 5 4

Here, the smallest element (i.e. 1) gets rank one and the
largest element (i.e. 15) gets rank five.

Every element gets its index if the vector was sorted in
ascending order.
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Handling ties in ranks

How do we rank elements if there is a tie?

Default in R: All ties get their average rank
rank(c(3, 1, 3, 15, 13))

[1] 2.5 1.0 2.5 5.0 4.0

Here, the two threes would get the ranks 2 and 3 and thus
their average rank is 2+3

2 = 2.5.

Other options for handling ties are available.
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Spearman Rank Correlation

Suppose that (𝑋, 𝑌 ) is a pair of random variables.

Let (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) be a random sample of (𝑋, 𝑌 ).
The Spearman Rank Correlation 𝜌𝑆(𝑋, 𝑌 ) is defined as the
Pearson Correlation 𝜌𝑃 (rank(𝑥1, … , 𝑥𝑛), rank(𝑦1, … , 𝑦𝑛)) of
the rank variables of 𝑋 and 𝑌
If 𝑌 tends to increase when 𝑋 increases, 𝜌𝑆(𝑋, 𝑌 ) is positive.

If 𝑌 tends to decrease when 𝑋 increases, 𝜌𝑆(𝑋, 𝑌 ) is
negative.
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Pearson vs. Spearman Correlation
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pearson = 0.743003394828374, spearman = 0.932715599062046
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Exercises

Suppose you have a dataset of exam scores for two subjects,
Math and English, for a group of students. After calculating
Spearman’s rank correlation coefficient, you obtain a value of
−0.75. What does this coefficient value indicate about the
relationship between the students’ performance in Math and
English?

If the Spearman correlation is exactly zero, does this imply
that both random variables are independent of each other?

Do Pearson and Spearman correlation react equally strong to
outliers? Answer the question by simulation data and adding
a fat outlier.
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