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1. Introduction1

Considering the uniform distance d∞ on the space C of two-dimensional2

copulas yields a compact metric space (C, d∞) in which the family of shuffles3

of the minimum copula M are dense (see [7], [16], [19]). If A ∈ C is a shuffle4

of M , µA denotes the corresponding doubly stochastic measure and X, Y5

random variables on a probability space (Ω,A,P) with PX⊗Y = µA, then X6

and Y are mutually completely dependent (see [19]) and knowing X implies7

knowing Y and vice versa. Consequently the product copula Π (describing8

complete unpredictability) can be approximated arbitrary well by mutually9

completely predictable copulas with respect to d∞. In other words, d∞ does10

not ’distinguish between different types of statistical dependence’ (see [16])11

and dependence measures which are continuous w.r.t. d∞ like Schweizer and12

Wolff’s σ (see [19] and [23]) seem somehow unnatural.13

Using the one-to-one correspondence between copulas and Markov operators14

on L1([0, 1]) allows to consider the topology OM on C which is induced by15

the strong operator topology on the space M of Markov operators (see [4],16

[16], [20]). Since the topology that the weak operator topology on M induces17

on C coincides with the topology induced by d∞ (see [20]) it is straightfor-18

ward to see that OM is finer than Od∞ . Rewriting the Markov operators in19

terms of regular conditional distributions (Markov kernels) we will define a20

L1-type metric D1 on C that is based on the conditional distribution func-21

tions and show that (i) D1 is a metrization of OM and that (ii) the metric22

space (C, D1) is complete and separable. This notion of convergence induced23

by D1 can be regarded both as the asymmetric version of the so-called ∂-24

convergence by Mikusinski and Taylor (see [17], [18]) and the asymmetric25

version of the Sobolev-type-metric d studied by Darsow and Olsen (see [5])26

and by Siburg and Stoimenov (see [24], [25]). We will define a dependence27

measure ζ1 : C → [0, 1] by ζ1(A) = 3D1(A,Π) and show that ζ1 exhibits28

various good properties, in particular that ζ1(A) = 1 if and only if A is a29

copula induced by a Lebesgue-measure-preserving transformation S on [0, 1],30

i.e. if Y = S(X) holds almost surely (X, Y being random variables with31

PX⊗Y = µA). Consequently, in contrast to d∞, all completely dependent32

copulas have maximum D1-distance to Π and Π can not be approximated by33

such copulas w.r.t. D1. The interrelation between ζ1 and the mutual depen-34

dence measure ω by Siburg and Stoimenov (see [24], [25]) will be analyzed.35

Furthermore we will give some examples and calculate the dependence mea-36

sure ζ1 for the Farlie-Gumbel-Morgenstern family, for the Marshall-Olkin37
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family and the Frechet family of copulas. Finally, using completeness of38

(C, D1), we will show that the construction of copulas with fractal support39

given in [10] also works w.r.t. the stronger metric D1 instead of d∞.40

2. Notation and preliminaries41

Throughout the whole paper C will denote the family of all two-dimensional
copulas. For every copula A ∈ C the corresponding doubly stochastic measure
will be denoted by µA, the family of all these µA by PC. For every A ∈ C
AT will denote the transposed copula, defined by AT (x, y) := A(y, x) for all
(x, y) ∈ [0, 1]2, M will denote the mimimum copula, Π the product copula
and W the lower Fréchet-Hoeffding bound. For properties of copulas see [8]
and [19]. d∞ will denote the uniform metric on C, i.e.

d∞(A,B) := max
(x,y)∈[0,1]2

|A(x, y) −B(x, y)|.

B(Rd) denotes the Borel σ-field in Rd, B([0, 1]) the Borel σ-field in [0, 1], λd
42

the d-dimensional Lebesgue measure and λ the Lebesgue measure on [0, 1].43

If X, Y are real-valued random variables on a probability space (Ω,A,P)44

then we will write PX⊗Y for their joint distribution and PX ,PY for the45

distributions of X and Y . E(Y |X) will denote the conditional expectation46

of Y given X . Since by definition E(Y |X) is Aσ(X)-measurable there exists47

a measurable function g : R → R such that E(Y |X) = g ◦ X holds P-48

almost surely; we will write E(Y |X = x) = g(x) and call g a version of the49

conditional expectation of Y given X . A measurable function g : R → R is a50

version of the conditional expectation of Y given X if and only if51

∫

B

g(x)dPX =

∫

X−1(B)

Y dP (1)

holds for every B ∈ B(R). A Markov kernel from R to B(R) is a mapping52

K : R × B(R) → [0, 1] such that x 7→ K(x,B) is measurable for every53

fixed B ∈ B(R) and B 7→ K(x,B) is a probability measure for every fixed54

x ∈ R. A Markov kernel K : R × B(R) → [0, 1] is called regular conditional55

distribution of Y given X if for every B ∈ B(R)56

K(X(ω), B) = E(1B ◦ Y |X)(ω) (2)

holds P-a.s. It is well know that for each pair (X, Y ) of real-valued random57

variables a regular conditional distribution K(·, ·) of Y given X exists, that58
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K(·, ·) is unique PX -a.s. (i.e. unique for PX -almost all x ∈ R) and that59

K(·, ·) only depends on PX⊗Y . Hence, given A ∈ C we will denote (a version60

of) the regular conditional distribution of Y given X by KA(·, ·) and refer61

to KA(·, ·) simply as regular conditional distribution of A. Note that for62

every A ∈ C, its conditional regular distribution KA(·, ·), and Borel sets63

E, F ∈ B([0, 1]) we have64

∫

F

KA(x, E) dλ(x) = µA(F ×E), (3)

so in particular65
∫

[0,1]

KA(x, E) dλ(x) = λ(E). (4)

For more details and properties of conditional expectation and regular con-66

ditional distributions see [14], [15], [2], [3].67

A linear operator T on L1([0, 1],B([0, 1]), λ) is called Markov operator (see68

[4],[16], [20]) if it fulfils the following three properties:69

1. T is positive, i.e. T (f) ≥ 0 whenever f ≥ 070
71

2. T (1[0,1]) = 1[0,1]72
73

3.
∫

[0,1]
(Tf)(x)dλ(x) =

∫

[0,1]
f(x)dλ(x)74

The class of all Markov operators on L1([0, 1],B([0, 1]), λ) will be denoted75

by M. It is straightforward to see that the operator norm of T is one, i.e.76

‖T‖ := sup{‖Tf‖1 : ‖f‖1 ≤ 1} = 1 holds. According to [4] and [20] there77

is a one-to-one correspondence between C and M - in fact, the mappings78

Φ : C → M and Ψ : M → C, defined by79

Φ(A)(f)(x) : = (TAf)(x) :=
d

dx

∫

[0,1]

A,2(x, t)f(t)dλ(t),

(5)
Ψ(T )(x, y) : = AT (x, y) :=

∫

[0,x]

(T1[0,y])(t)dλ(t)

for every f ∈ L1([0, 1]) and (x, y) ∈ [0, 1]2 (A,2 denoting the partial derivative80

w.r.t. y), fulfil Ψ ◦Φ = idC and Φ ◦Ψ = idM. Note that in case of f := 1[0,y]81

we have (TA1[0,y])(x) = A,1(x, y) λ-a.s. (the a.s. existence of the partial82

derivative follows from the fact that for every fixed y the mapping x 7→83

A(x, y) is absolutely continuous since copulas are Lipschitz continuous, see84
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[19], [22], [12]). According to [16] the Markov operator TA is a version of the85

conditional expectation of f ◦ Y given X , i.e.86

(TAf)(x) = E(f ◦ Y |X = x) (6)

holds λ-a.s. Since this result is not proved in all generality in [16] we will87

start with a proof in the next section. It has been shown in [20] that88

limn→∞ d∞(An, A) = 0 if and only if limn→∞ Tn = T in the weak operator89

topology. Using (5) the strong operator topology (see [21]) on M induces a90

topology OM on the C. The metric D1 we will define in the next section is91

a metrization of OM. We will show amongst other things that the resulting92

metric space (C, D1) is complete and separable.93

3. The metric space (C,D1)94

As mentioned before we will start with the following result (already men-95

tioned in [16] and [17]):96

Lemma 1. Suppose that A ∈ C, let the Markov operator TA = Φ(A) be de-97

fined according to (5), denote a conditional regular distribution of A by KA98

and suppose that X, Y are random variables with distribution µA. Then for99

every f ∈ L1([0, 1],B([0, 1]), λ) the function TAf is a version of the condi-100

tional expectation of f ◦ Y given X, i.e. the following equality holds:101

(TAf)(x) = E(f ◦ Y |X = x) =

∫

[0,1]

f(y)KA(x, dy) λ-a.s. (7)

Proof: (I) We will use equality (1) and start with f := 1E, E ∈ B([0, 1]).
As first step consider B = [b, b] ⊆ [0, 1]. Using the fact that the function gf ,
defined by

gf(x) :=

∫

[0,1]

A,2(x, t)f(t)dλ(t),

according to [20] is Lipschitz continuous (therefore absolutely continuous)102

and monotonic we get103

L(B) :=

∫

B

(TAf)(x)dλ(x) =

∫

B

∂

∂x
gf(x)dλ(x) = gf(b) − gf(b)

=

∫

E

∂

∂y

(

A(b, t) − A(b, t)
)

dλ(t)
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= µA

(

(b, b] ×E
)

= µA

(

[b, b] ×E
)

= P(X ∈ [b, b], Y ∈ E)

=

∫

X−1(B)

f ◦ Y dP =: R(B)

Interpreting L and R as finite (positive) measure on ([0, 1],B[0, 1]) (the con-104

ditions are easily verified) it follows that L and R coincide on B([0, 1]) since105

the class of intervals generates B([0, 1]), is closed w.r.t. intersection and106

monotonically reaches [0, 1] (see [15]). Consequently TAf is a version of the107

conditional distribution of f ◦ Y given X . (II) For the general case we can108

proceed in the usual way: Since L and R are linear and positive in f we109

immediately get (7) for non-negative step functions. Using the fact that110

for every non-negative f ∈ L1([0, 1],B([0, 1]), λ) we can find a sequence of111

non-negative step functions monotonically converging to f together with the112

properties of the Lebesgue integral and continuity of TA we get the desired113

result for L1
+([0, 1],B([0, 1]), λ). The final step to L1([0, 1],B([0, 1]), λ) is clear114

by positivity of the Markov operator and linearity/positivity of conditional115

expectation. Finally, applying disintegration (see [14]) proves the second part116

of the equality. �117

118

The next step is to express convergence of the Markov operators in the strong119

operator topology in terms of the corresponding regular conditional distri-120

butions.121

Lemma 2. Suppose that A,A1, A2, . . . are copulas, let T, T1, T2 . . . denote the122

corresponding Markov operators and K,K1, K2 . . . the corresponding regular123

conditional distributions. Then the following assertions hold:124

(i) limn→∞ Tn = T in the strong operator topology on L1([0, 1],B([0, 1]), λ)
if and only if for every Borel set B ∈ B([0, 1]) we have

lim
n→∞

‖Kn( · , B) −K( · , B)
∥

∥

1
= 0.

(ii) Suppose that Γ is a countable dense set in [0, 1]. Then limn→∞ Tn = T125

in the strong operator topology on L1([0, 1],B([0, 1]), λ) if and only if126

for every set B = [0, γ], γ ∈ Γ, we have127

lim
n→∞

‖Kn( · , B) −K( · , B)
∥

∥

1
= 0. (8)
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Proof: Suppose that limn→∞ Tn = T in the strong operator topology on128

L1([0, 1],B([0, 1]), λ) and that B ∈ B([0, 1]). Then, using Lemma 1 and129

setting f := 1B we get130

‖Kn( · , B) −K( · , B)
∥

∥

1
=

∫

[0,1]

|Kn(x,B) −K(x,B)| dλ(x)

= ‖Tnf − Tf
∥

∥

1
−→ 0 for n → ∞,

which proves one implication in (i) and (ii). It suffices to prove the other131

implication in (ii). Suppose that Γ is as in (ii) and that (8) holds for all sets B132

of the form B = [0, γ], γ ∈ Γ. According to [9] (Theorem 2.29) convergence of133

Tn to T with respect to the strong operator topology on L1([0, 1],B([0, 1]), λ)134

follows if we have ‖Tnf − Tf‖1 −→ 0 for every f = 1[a,b] with a, b ∈ Γ135

since the linear hull of these function is dense in L1([0, 1],B([0, 1]), λ). Let136

f = 1[a,b] with a, b ∈ Γ, then137

Kn( · , [a, b]) = Kn( · , [0, b]) −Kn( · , [0, a]) + Kn( · , {a})

for every n ∈ N and for K instead of Kn. For the last term we get
∫

[0,1]

Kn(x, {a})dλ(x) = λ({a}) =

∫

[0,1]

K(x, {a}) dλ(x) = 0

so Kn(x, {a}) = K(x, {a}) = 0 λ-a.s. Hence, using the triangle inequality,138

we get ‖Tnf − Tf‖1 −→ 0, which completes the proof since a, b ∈ Γ were139

arbitrary. �140

141

Motivated by Lemma 1 and Lemma 2 it seems natural to consider the fol-142

lowing metrics on C:143

D∞(A,B) := sup
y∈[0,1]

∫

[0,1]

∣

∣KA(x, [0, y]) −KB(x, [0, y])
∣

∣dλ(x) (9)

D1(A,B) :=

∫

[0,1]

∫

[0,1]

∣

∣KA(x, [0, y]) −KB(x, [0, y])
∣

∣dλ(x) dλ(y) (10)

Furthermore we will also use the L2-version D2 of D1 to see the interrelation144

between D1 and the Sobolev-type metric d considered by Darsow and Olsen145

(see [5]) and by Siburg and Stoimenov (see [24], [25]):146

D2
2(A,B) :=

∫

[0,1]

∫

[0,1]

(

KA(x, [0, y])−KB(x, [0, y])
)2
dλ(x) dλ(y) (11)
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Remark 3. Using Fubini’s theorem D1(A,B) can be seen as expected L1-147

distance of the conditional distribution functions.148

To simplify notation we will write149

ΦA,B(y) :=

∫

[0,1]

∣

∣KA(x, [0, y]) −KB(x, [0, y])
∣

∣dλ(x) (12)

for all A,B ∈ C. Before analyzing the main properties of the function ΦA,B150

we will show that D1, D2 and D∞ are metrics.151

Lemma 4. D∞, D1 and D2 defined according to (9), (10) and (11), are152

metrics on C.153

Proof : First of all it has to be shown that the integrand in (10) is measurable.
Define H on [0, 1]2 by H(x, y) := KA(x, [0, y]), then H is measurable in x
and non-decreasing and right-continuous in y. Fix z ∈ [0, 1]. For every
q ∈ Q ∩ [0, 1] define

Aq := {x ∈ [0, 1] : H(x, q) < z} ∈ B([0, 1]),

and set
A :=

⋃

q∈Q∩[0,1]

Aq × [0, q] ∈ B(R2).

Using right-continuity it is straightforward to see that A = H−1([0, z)), from154

which measurability of H directly follows. Furthermore, if D1(A,B) = 0 then155

there exists a set Λ ⊆ [0, 1]2 with λ2(Λ) = 1 such that for every (x, y) ∈ Λ156

we have equality KA(x, [0, y]) = KB(x, [0, y]). It follows that λ(Λx) = 1 for157

almost every x ∈ [0, 1]. For every such x we have that the kernels coincide158

on a dense set, so they have to be identical. Again using disintegration (see159

[14]) or equation (5) shows A = B. The remaining properties of a metric160

are obviously fulfilled. The fact that D∞ and D2 are metrics can be shown161

analogously. �162

Lemma 5. For every pair A,B ∈ C the function ΦA,B, defined according to163

(12), is Lipschitz continuous with Lipschitz constant 2 and fulfils ΦA,B(y) ≤164

min{2y, 2(1− y)} for every y ∈ [0, 1]. Moreover there exist copulas A,B ∈ C165

for which equality ΦA,B(y) = min{2y, 2(1 − y)} holds for all y ∈ [0, 1].166
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Proof: Suppose that E ∈ B([0, 1]), then using (4) and applying Scheffé’s167

theorem (see [6]) we get168

∫

[0,1]

∣

∣KA(x, E) −KB(x, E)
∣

∣dλ(x) = 2

∫

G

KA(x, E) −KB(x, E) dλ(x)

≤ 2

∫

[0,1]

KA(x, E) dλ(x) = 2λ(E)

whereby G = {x ∈ [0, 1] : KA(x, E) > KB(x, E)}. Since KA(·, Ec) =169

1 − KA(·, E) holds, considering E = [0, y] implies the desired inequality.170

Straightforward calculations show that in case of the copulas M and W we171

get ΦM,W (y) = min{2y, 2(1 − y)} for every y ∈ [0, 1].172

Finally, to see Lipschitz continuity, suppose that s > t, then173

|ΦA,B(s) − ΦA,B(t)| ≤

∫

[0,1]

∣

∣KA(x, (t, s]) −KB(x, (t, s])
∣

∣ dλ(x)

= 2λ
(

(t, s]
)

= 2(s− t). �

Using Lemma 5 it is straightforward to show that D1 is a metrization of OM174

as mentioned in the introduction:175

Theorem 6. Suppose that A,A1, A2, . . . are copulas and let T, T1, T2, . . . de-176

note the corresponding Markov operators. Then the following four conditions177

are equivalent:178

(a) limn→∞D1(An, A) = 0179

(b) limn→∞D∞(An, A) = 0180

(c) limn→∞ ‖Tnf − Tf‖1 = 0 for every f ∈ L1([0, 1],B([0, 1]), λ)181

(d) limn→∞D2(An, A) = 0182

Proof: For every n ∈ N define functions fn : [0, 1] → [0, 1] by fn(y) :=
ΦAn,A(y). Then every fn is Lipschitz continuous with Lipschitz constant 2.
Set ‖fn‖C∞

:= max
{

fn(y) : y ∈ [0, 1]
}

and suppose that fn(y0) = ‖fn‖C∞

for some y0 ∈ [0, 1]. Then the area between the graph of fn and the x-axis
(i.e. the endograph of fn) surely has to contain the triangle ∆L with ver-
tices {(y0−fn(y0)/2 , 0 ), (y0, 0), (y0, fn(y0))} or the triangle ∆R with vertices
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{(y0, 0), (y0 + fn(y0)/2 , 0), (y0, fn(y0))}. Consequently we have

‖fn‖C∞
≥

∫

[0,1]

fn(y) dλ(y) ≥
‖fn‖

2
C∞

4
.

This shows that (a) and (b) are equivalent. Furthermore (b) implies that
the sequence fn converges uniformly to 0, from which, using Lemma 2, (c)
immediately follows. Implication (c) ⇒ (a) follows directly from Lemma 2
and Lebesgue’s theorem on dominated convergence. Finally, equivalence of
(a) and (d) is a direct consequence of the fact that

D2
2(A,B) ≤ D1(A,B) ≤ D2(A,B)

holds for all A,B ∈ C. �.183

184

Before proceeding with D1 we will take a look at the interrelation between the185

above mentioned metrics, ∂-convergence analyzed by Mikusinski and Taylor186

(see [17], [18]), and the Sobolev-type-metric d studied by Darsow and Olsen187

(see [5]) as well as by Siburg and Stoimenov (see [24], [25]). It is straight-188

forward to see that a sequence (An)n∈N of copulas ∂-converges to a copula A189

if and only of limn→∞D1(An, A) + D1(A
T
n , A

T ) = 0. Hence the metric D∂ ,190

defined by191

D∂(A,B) := D1(A,B) + D1(A
T , BT ) (13)

for all A,B ∈ C, is a metrization of ∂-convergence. Furthermore it is straight-192

forward to see that the topology O∂ induced by D∂ on C is finer than OM - in193

fact this is a direct consequence of Example 25 and equation (13). Moreover,194

Theorem 6 implies that the topology induced by the Sobolev-type metric d195

is exactly O∂ since196

d2(A,B) = D2
2(A,B) + D2

2(A
T , BT ) (14)

holds (using (13) this follows from [5] too).197

198

The following lemma will be useful in Section 6:199

Lemma 7. Suppose that A,A1, A2, . . . are copulas with corresponding regular200

conditional distributions K,K1, K2, . . .. If Kn(x, ·) → K(x, ·) weakly λ-a.s.201

then we have limn→∞D1(An, A) = 0.202
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Proof: Let Λ ⊆ [0, 1] denote the set of all x for which the conditional
distributions converge weakly and suppose that λ(Λ) = 1. If f is a continuous
function on [0, 1] then we have

lim
n→∞

∫

[0,1]

f(y)Kn(x, dy) =

∫

[0,1]

f(y)K(x, dy)

for every x ∈ Λ, which, using Lebesgue’s theorem on dominated convergence
yields

lim
n→∞

‖TAn
f − TAf‖1 = 0.

Since the space C∞([0, 1]) of all continuous functions on [0, 1] is dense in203

L1([0, 1],B([0, 1]), λ)) this completes the proof. �204

205

It is well known that (C, d∞) is a compact metric space. Since the topo-206

logy induced by D1 is strictly finer than that induced by d∞ (see [16] or207

Proposition 14) we can not expect the metric space (C, D1) to be compact.208

The next theorem, however, shows that (C, D1) is still topologically rich:209

Theorem 8. The metric space (C, D1) is complete and separable.210

Proof: Suppose that (An)n∈N is a Cauchy sequence in (C, D1). For every211

n ∈ N let Kn(·, ·) denote the corresponding regular conditional distribution212

and Hn the function on [0, 1]2, defined by Hn(x, y) := Kn(x, [0, y]). Since we213

have214

D1(An, Am) =

∫

[0,1]

∫

[0,1]

∣

∣Hn(x, y) −Hm(x, y)
∣

∣dλ(x) dλ(y)

= ‖Hn −Hm‖L1([0,1]2,B([0,1]2), λ2)

(Hn)n∈N is a Cauchy sequence in L1([0, 1]2, B([0, 1]2), λ2), so there exists a
L1-limit H ∈ L1([0, 1]2, B([0, 1]2), λ2). According to the theorem of Riesz-
Fischer (see [9], [22]) we can find a subsequence (Hnj

)j∈N and a Borel set
∆ ⊆ [0, 1]2 with λ2(∆) = 1 and limj→∞Hnj

(x, y) = H(x, y) for all (x, y) ∈ ∆.
W.l.o.g. we may assume that H(x, 1) = 1 for every x ∈ [0, 1]. We will show
that we can find a measurable function G : [0, 1]2 → [0, 1] with the following
two properties: (i) G = H λ2-a.s. and (ii) K(x, [0, y]) := G(x, y) is again a
regular conditional distribution of a copula A ∈ C.
Using Fubini’s theorem (see [9], [22]) it follows that λ(∆y) = λ({x ∈ [0, 1] :
(x, y) ∈ ∆}) = 1 for λ-almost all y ∈ [0, 1]. Consequently we can find a

11



countable set Q = {y1, y2, . . .} ⊆ [0, 1] with 1 ∈ Q and a set Λ0 ⊆ [0, 1] with
λ(Λ0) = 1 such that limj→∞Hnj

(x, yi) = H(x, yi) holds for every yi ∈ Q and
every x ∈ Λ0. Again using Fubini we can find a subset Λ ⊆ Λ0 such that
λ(∆x) = λ({y ∈ [0, 1] : (x, y) ∈ ∆}) = 1 for every x ∈ Λ. Define a new
function G : [0, 1]2 → [0, 1] by G(x, y) = 1 if y = 1 and

G(x, y) := inf
yi∈Q,yi>y

H(x, yi) 1Λ(x) + 1[0,1](y) 1Λc(x).

It is straightforward to see that G(·, ·) is measurable in x for fixed y and a
distribution function on [0, 1] in y for fixed x. In particular G is measurable
(same argument as in Lemma 4) and G induces a Markov kernel K(·, ·)
by setting K(x, [0, y]) := G(x, y) and, for every x, uniquely extending the
probability measure K(x, ·) from the class of all intervals [0, y] to B([0, 1]) in
the standard way (see [9], [14]).
For every fixed x ∈ Λ define (measurable) functions gx, hx : [0, 1] → [0, 1]
by gx(y) := G(x, y), hx(y) := H(x, y) and set Πx := {y ∈ [0, 1] : gx(y) 6=
hx(y)}. Using monotonicity it follows that Πx ⊆ ∆c

x ∪ DC(gx), whereby
DC(gx) denotes the (at most) countably infinite set of discontinuities of gx.
Consequently, setting Π := {(x, y) ∈ [0, 1]2 : G(x, y) 6= H(x, y)} and again
using Fubini we get

λ2(Π) =

∫

[0,1]

λ(Πx) dλ(x) =

∫

Λ

λ(Πx) dλ(x) = 0,

which implies limn→∞ ‖Hn − G‖L1([0,1]2,B([0,1]2),λ2) = 0. It remains to show215

that K(x, [0, y]) is a regular conditional distribution of a copula A ∈ C. Fix216

y ∈ [0, 1], then there exists a monotonically decreasing sequence (zl)l∈N in Q217

with limit y. Applying Lebesgue’s theorem on dominated convergence shows218

∫

[0,1]

K(x, [0, y])dλ(x) =

∫

[0,1]

G(x, y)dλ(x) = lim
i→∞

∫

[0,1]

H(x, zi)dλ(x)

= lim
i→∞

lim
j→∞

∫

[0,1]

Hnj
(x, zi)dλ(x) = lim

i→∞
zi = y

Hence there exists a copula A ∈ C such that K(·, ·) = KA(·, ·). This completes219

the proof of the first part of the theorem.220

In order to show separability we can proceed as follows: For every n ≥ 2221

define subsets Sn and SQn of C as follows: Sn is the class of all B ∈ C whose222
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mass µB is uniformly distributed on each rectangle Rij of the form Rij = [(i−223

1)/n, i/n]×[(j−1)/n, j/n]. Denote by SQn the subset of all B ∈ Sn that also224

fulfil µB(Rij) ∈ Q for all i, j ∈ {1, . . . , n}. Since SQn is countably infinity225

SQ := ∪∞
n=2SQn ⊆ C is countably infinite too. Using the results in [16] Sn226

is dense in C with respect to the strong operator topology, so, by Theorem227

6, Sn is dense in the metric space (C, D1). Fix an arbitrary B ∈ Sn and let228

ε > 0. Obviously the family Sn is isomorphic to the class Ωn of all doubly229

stochastic matrices. According to Birkhoff’s theorem on doubly stochastic230

matrices (see [11]) every element M ∈ Ωn is the convex combination of m231

(≤ n2+1) permutation matrices (Pi)
m
i=1, i.e. M =

∑m

i=1 αiPi with αi ≥ 0 and232

∑m

i=1 αi = 1. Since Q is dense in [0, 1] we can find a vector (β1, . . . , βm) ∈ Qm
233

such that both maxi=1...m |αi − βi| < ε/(n2 + 1) and
∑m

i=1 βi = 1 holds.234

Returning to B this implies the existence of an element B̂ ∈ SQn such that235

maxi,j=1...m |µB(Rij) − µB̂(Rij)| < ε/(n2 + 1). It follows immediately that236

D1(B, B̂) < ε and we have shown that SQn is dense in Sn, which completes237

the proof. �238

4. The dependence measure ζ1 induced by D1239

As mentioned in the introduction we want to analyze the dependence mea-240

sure ζ1 defined as a scalar times the D1-distance to the product copula Π.241

Intuitively it seems natural that completely dependent copulas (in the sense242

mentioned in the introduction, for a precise definition see below) should be243

assigned maximum dependence degree since they describe a (unidirectional)244

deterministic interrelation between X and Y (i.e. knowing X implies know-245

ing Y , but in general not vice versa), whereas Π describes the other extreme246

in which knowing X does not at all improve our a-priori-knowledge on Y .247

Theorem 14 states that our dependence measure ζ1 fulfils this property.248

We will start with the following definition of completely dependent copu-249

las and afterwards give equivalent conditions justifying the name completely250

dependent :251

Definition 9. A copula A ∈ C is called completely dependent if there ex-252

ists a λ-preserving transformation S : [0, 1] → [0, 1] such that the corres-253

ponding Markov operator TA has the form TAf = f ◦ S λ-a.s. for every254

f ∈  L1([0, 1],B([0, 1]), λ). The class of all completely dependent copulas will255

be denoted by Cd. A copula is called mutually completely dependent if and256

only if A,AT ∈ Cd holds.257
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Lemma 10. Given A ∈ C the following conditions are equivalent:258

(d1) A ∈ Cd259

(d2) There exists a λ-preserving transformation S : [0, 1] → [0, 1] such that260

A(x, y) = λ
(

[0, x] ∩ S−1([0, y])
)

for all (x, y) ∈ [0, 1]2.261

(d3) There exists a λ-preserving transformation S : [0, 1] → [0, 1] such that262

K(x, E) := 1E(Sx) = δSx(E) is a regular conditional distribution of A.263

(d4) There exists a λ-preserving transformation S : [0, 1] → [0, 1] such that264

µA(Γ(S)) = 1, whereby Γ(S) := {(x, Sx) : x ∈ [0, 1]} ∈ B([0, 1]2)265

denotes the graph of S.266

Proof: (d1) ⇒ (d2): Using the interrelation between Markov operators and267

copulas formulated in (5) we immediately get268

A(x, y) =

∫

[0,x]

(TA1[0,y])(z) dλ(z) =

∫

[0,x]

1[0,y] ◦ S(z) dλ(z)

= λ
(

[0, x] ∩ S−1([0, y])
)

for all (x, y) ∈ [0, 1]2.
(d2) ⇒ (d3): It is clear that if S : [0, 1] → [0, 1] is a λ-preserving transfor-
mation, then K(x, E) defined as in (d3) is a Markov kernel. Suppose that
X, Y : Ω → [0, 1] are random variables on a probability space (Ω,A,P) such
that PX⊗Y = µA holds. If E, F ∈ B([0, 1]), then, using the extension theorem
for measures, we have

∫

X−1(F )

1E◦Y dP = P
(

X ∈ F, Y ∈ E
)

= λ
(

F∩S−1(E)
)

=

∫

F

1E(Sx) dλ(x),

so K(x, E) := 1E(Sx) = δSx(E) is a regular conditional distribution of A.
(d3) ⇒ (d1): Using Lemma 1 we get (TAf)(x) =

∫

[0,1]
f(y)KA(x, dy) = f(Sx)

for λ-a.s..
(d3) ⇒ (d4): Using disintegration (see [14]) we directly get

µA(Γ(S)) =

∫

[0,1]

KA(x, (Γ(S))x) dλ(x) =

∫

[0,1]

1{Sx}(Sx) dλ(x) = 1

(d4) ⇒ (d2): In case the graph of S has full mass we have KA(x, {Sx}) = 1269

for λ-almost all x ∈ [0, 1]. Consequently, using disintegration and again270
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Lemma 1 we finally get271

A(x0, y0) =

∫

[0,x0]

(

TA1[0,y0]

)

(z) dλ(z) =

∫

[0,x0]

KA(z, [0, y0]) dλ(z)

=

∫

[0,x0]

1[0,y0] ◦ S(z) dλ(z) = λ
(

[0, x0] ∩ S−1([0, y0])
)

.

This completes the proof. �272

Remark 11. Lemma 10 in particular shows that Cd contains all shuffles of273

Min, i.e. copulas induced by interval exchange transformations on [0, 1] (see274

[7]). Point (d4) implies that Definition 9 of complete dependence is equivalent275

to the original one given by Lancaster (see [13] and [25]), and point (d3) that276

a copula A is completely dependent if and only if it is left-invertible w.r.t.277

the ∗-product (see [5] and [25]).278

The following lemma essentially answers the question about which copulas279

have maximum D1-distance to Π:280

Lemma 12. For every A ∈ C the function ΦA,Π fulfils ΦA,Π(y) ≤ 2y(1 − y)281

for all y ∈ [0, 1]. Furthermore equality ΦA,Π(y) = 2y(1 − y) holds for every282

y ∈ [0, 1] if and only if A is a completely dependent copula.283

Proof: Because of ΦA,Π(0) = ΦA,Π(1) = 0 if suffices to consider y ∈ (0, 1).
Define

Dy :=

{

f : [0, 1] → [0, 1], f measurable and

∫

[0,1]

f(x)dλ(x) = y},

then obviously KA( · , [0, y]) ∈ Dy for every copula A ∈ C. Using Scheffé’s284

theorem (see [6]) we have285

∫

[0,1]

|f(x) − y| dλ(x) = 2

∫

Ef

(f(x) − y) dλ(x) = 2

∫

Ec
f

(y − f(x)) dλ(x) (15)

for every f ∈ Dy, whereby Ef := {x ∈ [0, 1] : f(x) > y}. We will show that
the left hand side of (15) becomes maximal if and only if there exists a set
E such that f = 1E λ-a.s.:
(i) If

∫

Ec
f

f(x)dλ(x) > 0 then the function H , defined by

H(x) :=

∫

[0,x]∩Ec
f

f(z)dλ(z) −

∫

[x,1]∩Ec
f

(1 − f(z))dλ(z), x ∈ [0, 1]

15



is absolutely continuous and fulfils H(0) ≤ −(1 − y)λ(Ec
f) < 0 and H(1) =

∫

Ec
f

f(x)dλ(x) > 0. Consequently we can find x0 ∈ (0, 1) such that H(x0) = 0

holds. Define a new function f ⋆ by f ⋆ := f 1Ef
+ 1Ec

f
∩[x0,1]. It is straight-

forward to see that f ⋆ ∈ Dy and, using the first equality in (15), that
∫

[0,1]
|f(x) − y| dλ(x) <

∫

[0,1]
|f ⋆(x) − y| dλ(x).

(ii) If
∫

Ec
f

f(x)dλ(x) = 0 but
∫

Ef
1 − f(x)dx > 0 then we can proceed analo-

gously and define a function H by

H(x) :=

∫

[0,x]∩Ef

f(z)dλ(z) −

∫

[x,1]∩Ef

(1 − f(z))dλ(z), x ∈ [0, 1].

H is absolutely continuous and fulfils both H(0) = −
∫

E
(1− f(x))dλ(x) < 0286

as well as H(1) =
∫

Ef
f(x)dλ(x) = y > 0, so we can find x0 ∈ (0, 1) such287

that H(x0) = 0 holds. Define a new function f ⋆ by f ⋆ := f 1Ec
f

+ 1Ef∩[x0,1].288

Again it is straightforward to see that f ⋆ ∈ Dy and, using the second equality289

in (15), that
∫

[0,1]
|f(x) − y| dλ(x) <

∫

[0,1]
|f ⋆(x) − y| dλ(x).290

In case neither (i) nor (ii) holds we immediately get f = 1Ef
λ-a.s. as well291

as λ(Ef) = y, which in turn implies
∫

[0,1]
|f(x) − y| dλ(x) = 2y(1 − y). This292

completes the proof of the first part of Lemma 12.293

If A ∈ C then according to (d3) in Lemma 10 there exists a λ-preserving294

transformation S : [0, 1] → [0, 1] such that K(x, E) := 1E(Sx) = δSx(E) is a295

regular conditional distribution of A. Hence296

ΦA,Π(y) =

∫

[0,1]

∣

∣KA(x, [0, y]) − y
∣

∣ dλ(x) =

∫

[0,1]

∣

∣1[0,y](Sx) − y
∣

∣ dλ(x)

=

∫

[0,1]

∣

∣1[0,y](x) − y
∣

∣ dλ(x) = 2y(1 − y)

holds for every y ∈ [0, 1].
To prove the other implication suppose that A ∈ C, that KA( ·, ·) is a regular
conditional distribution of A and that ΦA,Π(y) = 2y(1 − y) holds for every
y ∈ [0, 1]. It follows from the first part of the proof that for every y ∈ [0, 1]
there exists a set Ey with λ(Ey) = y and KA(x, [0, y]) = 1Ey

(x) for λ-almost
every x ∈ [0, 1]. Consequently we can find a measurable set M ⊆ [0, 1]
fulfilling λ(M) = 1 such that for every x ∈ M we have KA(x, [0, y]) = 1Ey

(x)
for every y ∈ [0, 1] ∩Q. Define a transformation S : [0, 1] → [0, 1] by

Sx := 1M(x) inf
{

y ∈ Q ∩ [0, 1] : KA(x, [0, y]) = 1
}

.
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Using right-continuity of distribution functions it follows that on M we have
KA(x, [0, y0]) = 1 if and only if Sx ≤ y0, i.e. if 1[0,y0](Sx) = 1. This implies
that S is measurable since

{x ∈ [0, 1] : Sx ≤ y0} = M c ∪ {x ∈ M : KA(x, [0, y0]) = 1} ∈ B([0, 1])

holds for every y0 ∈ [0, 1]. Furthermore

λS
(

[0, y0]
)

= λ
({

x ∈ [0, 1] : KA(x, [0, y0]) = 1
)}

= λ(Ey0) = y0,

so S is also λ-preserving. Since on M we have KA(x, [0, y0]) = 1[0,y0](Sx) =297

δSx([0, y0]) we have KA(x, E) = δSx(E) for every Borel set E which shows298

that (x, E) 7→ δSx(E) is a regular conditional distribution of A. Applying299

Lemma 10 completes the proof. �300

301

Using Lemma 12 and the fact that
∫

[0,1]
2y(1 − y)dy = 1/3 we finally de-302

fine the dependence measure ζ1 : C → [0, 1] by303

ζ1(A) := 3D1(A,Π), A ∈ C. (16)

Remark 13. Looking back at Remark 3 the dependence measure ζ1(A) can,304

up to a scalar, be interpreted as expected L1-distance between the conditional305

distribution function of A and the distribution function of the uniform dis-306

tribution U[0,1].307

Lemma 12 implies the following result.308

Theorem 14. Suppose that A ∈ C and let ζ1 be defined according to (16).309

Then ζ1(A) ∈ [0, 1]. Furthermore ζ1(A) = 1 if and only if A ∈ Cd, i.e. all310

completely dependent copulas have maximum dependence measure.311

Proposition 15. The following assertions hold:312

(i) The family Cd is closed with respect to D1.313

(ii) Suppose that S1, S2 are λ-preserving transformations on [0, 1] and let314

A1, A2 denote the corresponding completely dependent copulas. Then315

we have D2(A1, A2) = D1(A1, A2) = ‖S1 − S2‖1.316
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Proof: Since only completely dependent copulas have maximum D1-distance317

1/3 from Π (i) immediately follows from the fact that metrics are continuous318

in each argument. Point (ii) can be proved as follows:319

D2
2(A1, A2) =

∫

[0,1]

∫

[0,1]

(

1[0,y](S1x) − 1[0,y](S2x)
)2
dλ(x)dλ(y)

=

∫

[0,1]

∫

[0,1]

∣

∣1[0,y](S1x) − 1[0,y](S2x)
∣

∣dλ(x)dλ(y) = D1(A1, A2)

=

∫

[0,1]

∫

[0,1]

∣

∣1[0,y](S1x) − 1[0,y](S2x)
∣

∣dλ(y)dλ(x)

= ‖S1 − S2‖1. �

Remark 16. Independence of two random variables is a symmetric concept320

(knowing X does not change our knowledge about Y and vice versa) - never-321

theless, from the authors point of view, notions ’measuring’ dependence are322

not necessarily symmetric since in many situations the dependence structure323

might be strongly asymmetric as it is, for instance, the case in Example 25.324

Furthermore, having a unidirectional (i.e. non-mutual) dependence measure325

one can easily construct a mutual one (see, for instance, equation (17) below).326

Remark 17. The mutual dependence measure ω studied by Siburg and327

Stoimenov (see [25]) is defined by328

ω2(A) := 3 d2(A,Π) = 3 (D2
2(A,Π) + D2

2(A
T ,Π)). (17)

Arguments analogous to the ones used in the proof of Lemma 12 show that329

D2
2(A,Π) ≤ 1/6 with equality if and only if A ∈ Cd. Therefore, using (17)330

and Proposition 15 it follows immediately that ω(A) = 1 if and only if A331

is invertible and that the class of all invertible copulas is closed in (C, d)332

(already proved in a different manner in [25]).333

We will conclude this section with an example that shows the existence of334

λ-preserving transformations S, S1,S2, . . . on [0, 1] such that (Sn(x))n∈N does335

not converge to S(x) in any point x ∈ [0, 1] although at the same time336

limn→∞D1(An, A) = 0 holds.337

Example 18. For every m ∈ N and j ∈ {1, . . . , 2m−1} define an interval-338

exchange transformation (see [7]) S2m−1+j : [0, 1] → [0, 1] as follows (see339
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Figure 1: Interval exchange transformations used in Example 18

Figure 1):340

S2m−1+j (x) =







x +
(

1 − 2j−1
2m

)

if x ∈
(

j−1
2m

, j

2m

]

x−
(

1 − 2j−1
2m

)

if x ∈
(

1 − j

2m
, 1 − j−1

2m

]

x otherwise

Since every n ∈ N can uniquely be expressed in the form n = 2m + j with
m ∈ N and j ∈ {1, . . . , 2m−1} this defines a sequence (Sn)n∈N of λ-preserving
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transformations on [0, 1]. Let S denote the identity on [0, 1] and M,A1, A2 . . .
the corresponding completely dependent copulas in Cd. Since

‖S2m−1+j − S‖1 ≤
1

2m−1

holds we have limn→∞ ‖Sn − S‖1 = 0. Consequently, using Proposition 15,
limn→∞D1(An, A) = 0 follows. Suppose now that x ∈ (0, 1/2). Then for ev-
ery m ∈ N there exists a unique jxm ∈ {1, . . . , 2m−1} such that x ∈

(

jxm−1
2m

, jxm
2m

]

holds. Set ε = 1/2 − x > 0, then it follows that

lim
m→∞

S2m−1+jxm
(x) = lim

m→∞

(

x + 1 −
2jxm − 1

2m

)

= x + 1 − 2x = 1 − x > x + ε,

which shows that (Sn(x))n∈N can not converge to S(x) = x. Analogous341

arguments show that (Sn(x))n∈N does not converge to S(x) = x for every342

x ∈ (0, 1]. The only two points where (Sn)n∈N converges to S are 0 and 1. If343

we modify S on these two points this changes neither the induced copula M344

nor L1 convergence of (Sn)n∈N to S. Hence we have constructed a sequence345

(Sn)n∈N of measure preserving transformation that converges nowhere to S.346

5. Examples: ζ1 for some parametric classes of copulas347

The aim of this section is to calculate ζ1 for some well known parametric348

classes of copulas.349

Example 19 (Farlie-Gumbel-Morgenstern family). The FGM family350

(Gθ)θ∈[−1,1] of copulas is defined by (see [19])351

Gθ(x, y) = xy + θxy(1 − x)(1 − y). (18)

Gθ is absolutely continuous so Kθ(·, ·), defined by352

KGθ
(x, [0, y]) := y + θy(1 − 2x)(1 − y) ∀(x, y) ∈ [0, 1]2, (19)

is a regular conditional distribution of Gθ. Using Lemma 7 it follows immedi-353

ately that the family (Gθ)θ∈[−1,1] is continuous in θ with respect to D1. Fur-354

thermore it is straightforward to verify that D1(Gθ,Π) = |θ|
12

, so ζ1(Gθ) = |θ|
4

355

holds for every θ ∈ [−1, 1].356
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Example 20 (Marshall-Olkin family). The MO family (Mα,β)(α,β)∈[0,1]2357

of copulas (see [19]) is defined by358

Mα,β(x, y) =

{

x1−α y if xα ≥ yβ

x y1−β if xα ≤ yβ.
(20)

It contains Π (α = 0 or β = 0) as well as M (α = β = 1). Suppose that359

α, β > 0 then a regular conditional distribution KAα,β
(·, ·) of Aα,β is given by360

(x ∈ (0, 1], y ∈ [0, 1])361

KAα,β
(x, [0, y]) =

{

(1 − α)x−α y if y < x
α
β

y1−β if y ≥ x
α
β .

(21)

Again using Lemma 7 and the before-mentioned boundary cases it follows im-362

mediately that the family is continuous in (α, β) with respect to D1. Straight-363

forward but laborious calculations show that in case of α, β > 0364

ζ1(Mα,β) = 3α (1 − α)z +
6

β

1 − (1 − α)z

z
−

6

β

1 − (1 − α)z+1

z + 1
(22)

holds, whereby z = 1
α

+ 2
β
− 1. Figure 2 is an image plot of the function365

(α, β) 7→ ζ1(Mα,β).366

Example 21 (Frechet family). The Frechet family (Fα,β) with (α, β) ∈367

[0, 1]2 and α + β ≤ 1 (see [19]) is defined by368

Fα,β(x, y) := αM(x, y) + βW (x, y) + (1 − α− β)Π(x, y). (23)

Being a convex combination of the M,W and Π obviously KFα,β
(·, ·), defined369

by370

KFα,β
(x, [0, y]) = α1[0,y](x) + β1[0,y](1 − x) + (1 − α− β)y (24)

for all (x, y) ∈ [0, 1]2 is a regular conditional distribution of Fα,β . As in371

the previous examples the family is continuous in (α, β) with respect to D1.372

Furthermore it follows that373

ζ1(Fα,β) =
1

2

3α3 + 3αβ2 + 2β3

(α + β)2
= ζ1(Fβ,α) (25)

whenever α ≤ β and α+β > 0. In case α+β = 0 we have ζ1(F0,0) = 0 since374

F0,0 = Π - which is also the limit of (25) for α, β −→ 0+. Also note that for375

fixed γ ∈ (0, 1], α ∈ [0, γ] and β = γ−α the dependence measure ζ1 becomes376

mimimal in case of α = β = γ/2. Figure 3 is an image plot of the function377

(α, β) 7→ ζ1(Fα,β).378
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Figure 2: Image plot of the function (α, β) 7→ ζ1(Mα,β)

6. An application to copulas induced by special Iterated Function379

Systems380

We will now take a look to the construction of copulas with fractal support381

via Iterated Function System given in [10] and show that the mentioned382

convergence results w.r.t. d∞ also hold w.r.t. the much stronger metric383

D1. Before analyzing the general case we recall the definition of an Iterated384

Function System (see [1]) and start with a simple example.385

Definition 22. Suppose that (Ω, d) is a metric space and that n ∈ N. A386

mapping w : Ω → Ω is called contraction if there exists a constant L < 1387

such that d(w(x), w(y)) ≤ Ld(x, y) holds for all x, y ∈ Ω. A family (wl)
n
l=1 of388

contractions on Ω together with a vector (pl)
n
l=1 ∈ [0, 1]n fulfilling

∑n

l=1 pl = 1389

is called an Iterated Function System with probabilities (IFS for short). We390

will denote IFSs by {(wl)
n
l=1, (pl)

n
l=1}.391
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Figure 3: Image plot of the function (α, β) 7→ ζ1(Fα,β)
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Figure 4: Support of VΠ and V 2Π in Example 23

Example 23. Consider the matrix M = (tij)
3
i,j=1 defined by392

M =





1
6

0 1
6

0 1
3

0
1
6

0 1
6



 ,

23



set a = b = (0, 1/3, 2/3, 1) and Rji := [aj−1, aj ] × [bi−1, bi], 1 ≤ i, j ≤ 3. M
induces an IFS {(wji)

3
i,j=1, (tji)

3
i,j=1}, whereby the affine contractions wji :

[0, 1]2 → Rji, 1 ≤ i, j ≤ 3 are defined by

wji(x, y) = (aj−1 + x(aj − aj−1) , bi−1 + y(bi − bi−1)).

Let P([0, 1]2) denoting the set of all probability measures on ([0, 1]2,B([0, 1]2)).393

It straightforward to verify (see [10]) that the operator V : P([0, 1]2) 7→394

P([0, 1]2), defined by395

V (µ) :=
3

∑

i,j=1

tij µ
wji , (26)

maps PC to PC, so we can also see it as operator on C (see Figure 4). Sup-396

pose now that A ∈ C, that µA ∈ PC is the corresponding doubly stochastic397

measure and that KA(·, ·) denotes a regular conditional distribution of A. It398

is straightforward to see that the Markov kernel KV A(·, ·), defined by (27),399

is a regular conditional distribution of V A (again see Figure 4):400

y ∈
[

0,
1

3

]

: KV A

(

x, [0, y]
)

=
1

2
KA

(

3x, [0, 3y]
)

1[0, 1
3
](x) +

+
1

2
KA

(

3x− 2, [0, 3y]
)

1[ 2
3
,1](x)

y ∈
(1

3
,

2

3

]

: KV A

(

x, [0, y]
)

=
1

2
1[0, 1

3
]∪( 2

3
,1](x) +

+KA

(

3x− 1, [0, 3y − 1]
)

1( 1
3
, 2
3
](x) (27)

y ∈
(2

3
, 1
]

: KV A

(

x, [0, y]
)

=
(1

2
+

1

2
KA

(

3x, [0, 3y − 2]
)

)

1[0, 1
3
](x) + 1( 1

3
, 2
3
](x)

+
(1

2
+

1

2
KA

(

3x− 2, [0, 3y − 2]
)

)

1[ 2
3
,1](x)

Using (27) straightforward calculations show that for every A,B ∈ C the401

following relation between ΦV A,V B and ΦA,B holds:402

ΦV A,V B(3y) =
1

3
ΦA,B(3y)1[0, 1

3
](y) +

1

3
ΦA,B(3y − 1)1( 1

3
, 2
3
](y) +

+
1

3
ΦA,B(3y − 2)1( 2

3
,1](y)

Hence we get

D1(V A, V B) =

∫

[0,1]

ΦV A,V B(y) dy = 3
1

3

1

3

∫

[0,1]

ΦA,B(y) dy =
1

3
D1(A,B),
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showing that V is a contraction on (C, D1) with L = 1/3. Applying Ba-403

nach’s fixed point theorem and Theorem 8 it therefore follows that there is404

a (unique) globally attractive fixed point A⋆ ∈ C of V , i.e. for every copula405

B ∈ C we have D1(V
nB,A⋆) → 0 for n → ∞. Since convergence w.r.t.406

D1 implies convergence w.r.t. d∞ the copula A⋆ coincides with the fixed407

point w.r.t. d∞, so µA⋆ is a singular measure whose support has Hausdorff408

dimension dimH(supp(µA⋆)) = ln(5)/ ln(3) (see [10]).409

We will analyze the mapping V : C → C and its properties now in the410

general case. Suppose that M = (tij)i=1...n, j=1...m is a matrix with n ≥ 2411

rows and m columns fulfilling the following three conditions: (i) All entries412

are non-negative, (ii)
∑

tij = 1, and (iii) no row or column has all entries 0.413

According to [10] we will call such a matrix M transformation matrix. Given414

M we define the vectors (aj)
m
j=0, (bi)

n
i=0 of cumulative column and row sums415

by416

a0 = b0 = 0

aj =
∑

j0≤j

n
∑

i=1

tij j ∈ {1, . . . , m} (28)

bi =
∑

i0≤i

m
∑

j=1

tij i ∈ {1, . . . , n}.

Since M is a transformation matrix both (aj)
m
j=0 and (bi)

n
i=0 are strictly in-

creasing. Consequently Rji := [aj−1, aj] × [bi−1, bi] are compact non-empty
rectangles for every j ∈ {1, . . . , m} and i ∈ {1, . . . , n}. Consider the IFS
{(wji)j=1...m,i=1...n, (tij)j=1...m,i=1...n}, whereby the contraction wji : [0, 1]2 →
Rji is defined by

wji(x, y) =
(

aj−1 + x(aj − aj−1) , bi−1 + x(bi − bi−1)
)

.

The induced operator V on P([0, 1]2) is defined by417

V (µ) :=
m
∑

j=1

n
∑

i=1

tij µ
wji . (29)

Again it is straightforward too see that V maps PC into itself (see [10]). Fix418

an arbitrary A ∈ C and let KA denote a regular conditional distribution of419
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A. Then KV A(·, ·) is given by (empty sums are zero by definition)420

KV A(x, [0, y]) :=

∑

i0<i ti0j
∑n

i0=1 ti0j
+

tij
∑n

i0=1 ti0j
KA

( x− aj−1

aj − aj−1
,
[

0,
y − bi−1

bi − bi−1

])

(30)

for every x, y ∈ Rji = [aj−1, aj ] × [bi−1, bi] - we will use the smallest index421

j and the greatest index i such that (x, y) ∈ Rji to assures that KV A is422

well-defined also on the intersections of the rectangles and to make sure that423

y 7→ KV A(x, [0, y]) is a distribution function for every x ∈ [0, 1]. Suppose424

now that A,B ∈ C and that y ∈ (bi−1, bi), then the following interrelation425

between ΦV A,V B(y) and ΦA,B(y) holds:426

ΦV A,V B(y) =

∫

[0,1]

∣

∣KV A(x, [0, y]) −KV B(x, [0, y])
∣

∣dλ(x)

=
m
∑

j=1

∫

[aj−1,aj ]

tij
aj − aj−1

∣

∣

∣

∣

KA

( x− aj−1

aj − aj−1

,
[

0,
y − bi−1

bi − bi−1

])

−

KB

( x− aj−1

aj − aj−1
,
[

0,
y − bi−1

bi − bi−1

])

∣

∣

∣

∣

dλ(x)

=

m
∑

j=1

tij

∫

[0,1]

∣

∣

∣

∣

KA

(

x,
[

0,
y − bi−1

bi − bi−1

])

−KB

(

x,
[

0,
y − bi−1

bi − bi−1

])

∣

∣

∣

∣

dλ(x)

=

m
∑

j=1

tijΦA,B

( y − bi−1

bi − bi−1

)

= (bi − bi−1)ΦA,B

( y − bi−1

bi − bi−1

)

Since, according to Lemma 5, ΦA,B is Lipschitz continuous on [0, 1] and zero
on {0,1} it follows that

ΦV A,V B(y) =

n
∑

i=1

(bi − bi−1)ΦA,B

( y − bi−1

bi − bi−1

)

1(bi−1,bi](y)

for all y ∈ [0, 1]. Hence427

D1(V A, V B) =
n

∑

i=1

∫

(bi−1,bi]

(bi − bi−1)ΦA,B

( y − bi−1

bi − bi−1

)

dλ(y)

=
n

∑

i=1

(bi − bi−1)
2

∫

(0,1]

ΦAB(y) dλ(y)

=

n
∑

i=1

(bi − bi−1)
2D1(A,B),
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which shows that V is a contraction on (C, D1) since
∑n

i=1(bi − bi−1)
2 <428

∑n

i=1(bi − bi−1) = 1. Since M was an arbitrary transformation matrix we429

have proved the following result (see [10] for the analogous result with respect430

to the uniform distance d∞):431

Theorem 24. Suppose that M is a transformation matrix and let the oper-432

ator V be defined according to (29). Then V is a contraction on the metric433

space (C, D1) and there exists a unique copula A⋆ such that V A⋆ = A⋆ and434

for every B ∈ C we have limn→∞D1(V
nB,A⋆) = 0.435

Example 25. For every n ∈ N0 define λ-preserving transformations Sn :
[0, 1] → [0, 1] by

Sn(x) = 2nx (mod1)

and denote the corresponding completely dependent copulas by An. Since436

An ∈ Cd we have D1(An,Π) = 1/3. Consider the transformation matrix M437

defined by438

M =

(

1/2
1/2

)

and let V denote the corresponding operator defined according to (29). Then
it follows that

D1(A
T
n ,Π) = D1(V

nAT
0 , V

nΠ) =
1

2n
D1(M,Π) =

1

2n

1

3

which shows that limn→∞D1(A
T
n ,Π) = 0.439

7. Conclusion and future work440

We have introduced a metric D1 on the space C that is a metrization441

of the topology OM induced by the strong operator topology on the space442

M of corresponding Markov operators. It has been shown that the metric443

space (C, D1) is complete and separable and that the family Cd of completely444

dependent copulas is a closed subset of C having maximum D1-distance to445

the product copula Π. As a consequence ζ1 assigns all elements in Cd maxi-446

mum dependence measure one. ζ1 has been calculated for three parametric447

families of copulas and an application to copulas induced by special Iterated448

Functions Systems has been given.449

As future work it seems reasonable to explore further properties of the de-450

pendence measure ζ1 and the metric spaces (C, D1) and (C, D2) in general. In451
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particular it should be analyzed how well Π can be approximated by copulas452

induced by n λ-preserving transformations on [0, 1].453
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